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This issue of the Netherlands Journal of Psychology is the second of two special issues that give an account of non-
standard applications of Structural Equation Modelling (SEM), as presented at the 2012 Meeting of the Working 
Group SEM (Amsterdam, 22-23 March 2012). Since the foundation of the Working Group SEM in 1986, advanced 
structural equation modelling has been discussed in annual meetings at various locations in Germany, the Nether-
lands, and Switzerland. The presentation and discussion of methodological problems and developments in structural 
equation modelling are the main objectives of the Working Group. 

In this second special issue, Fischer, Brandt, Schermelleh-Engel, Moosbrugger, and Klein give an introduction of 
moderated linear and moderated quadratic effects in regression models. They present a screening procedure to 
identify potential moderated quadratic effects in regression models, which can also be used to distinguish mode-
rated quadratic effects from moderated linear effects. Barendse, Oort, Jak, and Timmerman use exploratory factor 
analysis to investigate the dimensionality in multilevel discrete data. With data from educational research, they 
illustrate two approaches to investigate the dimensionality, one with the restriction that there is measurement inva-
riance across clusters, and one without this restriction. Reinecke describes two models that can be used to handle 
missing data in panel designs, due to dropout. He combines the dropout models with a latent growth model. Using 
panel data from a study of the development of delinquent behaviour, he shows how these models provide informa-
tion about the dropout processes in the study. In the last article of this issue, Jak, Oort, Roorda, and Koomen extend 
the two-stage approach to meta-analytical SEM by proposing a method to treat studies that do not fully report all 
correlation coefficients. The method is illustrated with meta-analytic path modelling of data about teacher-student 
relations, attachment and achievement at school.  

We believe that these two special issues of the Netherlands Journal of Psychology together give a fine impression of 
the possibilities of non-standard SEM, and of the variety of substantive research questions that can benefit from an 
advanced SEM approach.

Suzanne Jak 
Annemarie Zand Scholten 
Frans J. Oort
University of Amsterdam, Amsterdam, the Netherlands
E-mail: S.Jak@uva.nl
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While in social and behavioural sciences several theories include moderated linear (interaction) effects, moderated 
quadratic effects are usually not hypothesised. However, moderated quadratic relationships have gained increasing 
interest in different research areas during the last years. Unfortunately, power to detect this type of effect is often 
quite low, because a complex nonlinear regression model which includes all linear terms as well as all second-
order and third-order terms has to be analysed. In this article we first develop a screening procedure analytically, 
which can be performed before a more complex nonlinear multiple regression model is selected and does not 
require the functional form of the nonlinear relation. Then we demonstrate that the screening procedure is able to 
differentiate between moderated linear and moderated quadratic effects using two artificial datasets as a first test 
of the procedure’s performance. Advantages and limitations of the screening procedure are discussed.

Where: Netherlands Journal of Psychology, Volume 67, 106-113

Detecting the type of  
moderated nonlinearity:  
A screening procedure

Over the last 40 years, interest in nonlinear 
relationships between variables has substantially 
increased. There have been numerous empirical 
studies aiming to detect moderator (also called 
interaction) effects in order to enhance the validity 
of prediction. Moderator effects have mostly been 
modelled by adding product terms to a linear 
multiple regression equation (see, e.g., Aiken & 
West, 1991; Allison, 1977; Blalock, 1965; Cohen & 
Cohen, 1975; Wright, 1976). A moderator effect is 
present when the size or direction of the effect of a 
predictor variable X on a criterion variable Y varies 
systematically according to the level of a second 
predictor variable Z and when the addition of the 
product term XZ to the multiple regression equation 
enhances the proportion of explained variance in the 
criterion variable beyond the proportion of explained 
variance due to the linear effects. In the following 
we will distinguish between two different types of 
moderator effects, a moderated linear effect and a 
moderated quadratic effect. 

Moderated linear effect

Typically, a regression model with a moderated 
linear effect is given by the following equation (e.g., 
Cohen & Cohen, 1975)

   (1)

where b0 is the intercept, b1 and b2 are linear effects, 
b3 is the moderated linear effect, and e is a residual 
variable. 
Rearranging equation (1) shows that if b3 is nonzero 
the regression of Y on X depends on the values of 
Z, i.e., the slope of Y on X increases (or decreases) 
linearly with increasing Z (Eq. 2a), as well as the 
regression of Y on Z depends on the values of X (Eq. 
2b): 

                (2a)
     
                  (2b)

Thus the regression equation with the characteristic 
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product term (XZ) is symmetrical in the predictor X 
and in the predictor Z. The regression of Y on X is 
linear at every value of Z, and the regression of Y on 
Z is also linear at every value of X. 

A typical example for a moderated linear effect is 
included in the theory of planned behaviour (TPB; 
Ajzen, 1991; Ajzen & Madden, 1986), a further 
development of the theory of reasoned action (Ajzen 
& Fishbein, 1980; Fishbein & Ajzen 1975). In 
short, the TPB predicts that planned behaviour is 
determined by behavioural intentions which in turn 
are influenced by an individual’s attitude toward the 
behaviour, subjective norms related to the execution 
of the behaviour, and the individual’s perception 
of the control over this behaviour. The TPB also 
postulates a moderator effect: volitional control, 
i.e., perceived behavioural control, is expected to 
moderate the intention-behaviour relationship in 
such a way that the effect of intention on behaviour 
is stronger when actual control is high. Thus, there is 
a moderated linear effect. 

Moderated quadratic effect

A moderated quadratic effect is present when a 
quadratic relationship between the predictor variable 
X and the criterion variable Y varies systematically 
according to the level of a second predictor 
(moderator) variable Z (see Aiken & West, 1991). 

In analogy to the product term XZ in the regression 
model with a moderated linear effect, the moderated 
quadratic term is formed as XZ2 for a potential 
moderator variable X. A regression with a moderated 
quadratic effect is given by 

      (3)

Rearranging equation (3) shows that if b3 is nonzero 
the regression of Y on X depends on the values of the 
moderator variable, which may be Z or X, depending 
on theory: 

                   (4a)
  
                  (4b)

The regression equation with the moderated 
quadratic term (XZ²) is not symmetric as can be seen 
in Equation (4a) and Equation (4b). This means that 
the effect of X on Y represents a gradual steady linear 
change when Z changes. Instead, the effect of Z on 
Y represents a gradual steady quadratic change when 
X changes. 

An example of a moderated quadratic effect is given 
by Baer and Oldham (2006). They investigated 

the relationship between experienced creative time 
pressure and creativity at work and postulated 
that the strength of this quadratic relationship is 
dependent on the moderator variable support for 
creativity. The hypothesis for a moderated quadratic 
effect could be confirmed: For employees receiving 
high support for creative behaviour, the relation 
between experienced time pressure and creativity 
followed an inverted U-shaped function, while the 
relation was almost linear for employees receiving 
low support (see Figure 1). 

Figure 1 Illustration of a moderated quadratic effect based 
on a study by Baer and Oldham (2006) using an artificial 
dataset. It can be seen that the relation between creativity 
and experienced creative time pressure is moderated by 
support for creativity. For persons receiving high support, 
the dependent variable creativity first increases and then 
declines with increasing values of experienced creative 
time pressure and reaches a maximum value of creativity 
for intermediate experienced creative time pressure. The 
relation is linear only for persons receiving low support, 
i.e., creativity declines with increasing values of experienced 
creative time

While in social and behavioural sciences several 
theories exist that include moderated linear 
effects, moderated quadratic effects are usually 
not hypothesised. However, moderated quadratic 
relationships have gained increasing interest in 
different research areas during the last years and 
several empirical studies have investigated this type of 
nonlinear effects, although it seems to be difficult to 
detect them (e.g., Baer & Oldham, 2006; De Bruijn et 
al., 2007; Le et al., 2011; Salamin & Hom, 2005). 
Le et al. (2011), for example, investigated several 
nonlinear effects of personality traits on job 
performance dimensions. Their results confirmed 
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the hypothesised inverted U-shaped relations 
between two personality traits, conscientiousness 
and emotional stability, and the criterion variables 
task performance and organisational citizenship 
behaviour. Additionally, they investigated four 
moderated quadratic effects with job complexity  
as moderator variable, but only one of these effects 
reached significance. 

Generally, higher-order nonlinear effects, such as 
moderated quadratic effects, only seldom reach 
significance in empirical research. But even if 
significant effects are found, these may be spurious 
due to methodological problems. Therefore it 
would be of crucial interest for researchers to be 
able to decide whether moderated quadratic effects 
or moderated linear effects are actually in the data 
without forming complex nonlinear terms. In the 
following, we will present a new screening method 
developed to differentiate between moderated 
quadratic and moderated linear effects without 
including complex nonlinear terms. 

The article is structured as follows: First, we briefly 
review the methodological problems in identifying 
moderated linear and moderated quadratic effects. 
Second, we introduce a new screening method which 
allows differentiating between a moderated quadratic 
effect and a moderated linear effect. Third, we 
illustrate the performance of the screening method 
using an artificial dataset. Finally, we discuss the 
limitations and the future perspectives of the new 
method.

Methodological problems

In general there are two main methodological 
problems in identifying moderated effects in 
regression analysis: multicollinearity and spurious 
effects. 

Multicollinearity
The first problem of multiple regression, 
multicollinearity, occurs when predictors in the 
regression equation are highly correlated. A high 
correlation between the predictors X and Z implies 
that the two variables are very similar, and it 
becomes difficult to determine which of the variables 
accounts for variance in the dependent variable Y. In 
case of severe multicollinearity, standard errors are 
inflated and inferential tests based on the standard 
errors have a low power. 
The problem of multicollinearity becomes more 
serious for nonlinear regression models. In general, 
product terms (e.g., XZ, X2, Z2) are highly correlated 
(e.g., r = .90 or above) with the variables that are used 
to form the product terms, independent of whether X 
and Z themselves are correlated or not. If the predictor 

variables X and Z are correlated, then the product 
terms are also correlated. Although centring predictor 
variables (converting the scores of the predictor 
variables into deviation form) is a convenient method 
for reducing multicollinearity, the product terms may 
still be correlated with the linear predictors, given that 
there is correlation between X and Z. This implies that 
with increasing numbers of product terms the problem 
of multicollinearity also increases. As a consequence, 
the power to detect effects associated with product 
terms decreases with the number of simultaneously 
tested nonlinear effects. 

Spurious effects

The second problem of nonlinear regression is 
concerned with spurious effects. Several authors 
have claimed that for the analysis of interaction 
(moderated linear) effects quadratic effects should 
always be included in the nonlinear regression model 
(e.g., MacCallum & Mar, 1995; Klein et al., 2009). 
This is due to the fact that if a true ‘quadratic’ effect 
is present in the population but only an interaction 
effect is being analysed (as in equation 1), then 
this interaction effect could become significant and 
would lead to a wrong conclusion: What appears 
to be a significant interaction effect might actually 
be a significant quadratic effect. Thus, a model for 
analysing interaction effects should always include 
quadratic effects, too. Equation (1) should therefore 
be extended as follows: 

      (5)

Obviously, the inclusion of the quadratic terms 
leads to an increased multicollinearity (if X and Z 
are correlated) and thus to a lower power to detect 
an interaction effect. The recommended model is in 
this sense a conservative procedure as it reduces the 
probability for detecting spurious interaction effects. 
Klein et al. (2009) showed that all product terms of 
the same order (here: order 2) and lower-order terms 
(here: order 1) need to be included in the model in 
order to prevent spurious effects. They used a Taylor 
polynomial of degree 2 to approximate the nonlinear 
regression function and proved that the inclusion 
of all product terms of the same order as well as all 
lower-order terms is necessary to avoid spurious 
effects.
This line of reasoning for the moderated linear 
regression can be transferred to a moderated 
quadratic regression which includes a product term 
of order 3 (XZ2). Consequently, in addition to the 
predictor variables X and Z, all product terms of 
order 2, XZ, X², and Z² (see equation 5), and all 
product terms of order 3, X³, Z³, XZ², and X²Z, should 
be included in the regression equation:
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      (6)

Using regression equation (6) instead of equation (3) 
leads to a very conservative procedure for testing a 
moderated quadratic effect.
The low power for detecting moderated quadratic 
effects seldom leads to significant results. 
Nonetheless, a complex model for testing moderated 
quadratic effects is necessary from a statistical 
perspective in order to prevent spurious effects. 
A non-significant moderated quadratic effect in such 
a complex model as given in equation (6) could be 
interpreted in two different ways: Either there is no 
effect in the population or there is an effect in the 
population but the power is too low to detect the 
effect in the sample. 

Method

Screening procedure
In this section we present a screening procedure 
which can be used prior to estimating a complex 
regression model. This procedure should enable a 
researcher to identify potential moderated quadratic 
effects and differentiate these effects from moderated 
linear effects.

First, we describe the differences between moderated 
linear and moderated quadratic effects and the 
implications on how to distinguish between these 
two types of effects. Second, we introduce the 
screening procedure based on this distinction. 
In general, with an infinite number of data points, 
one could distinguish moderated linear effects from 

moderated quadratic effects by using conditional 
effects. A conditional effect means that the 
relationship between a criterion variable Y and 
a predictor variable X depends on the level of a 
moderator variable Z and may be different across 
values of Z. 
In Figure 2 the two different types of effects are 
illustrated for uncorrelated predictors X and Z. To 
simplify the function the linear effects were set to 
zero. 

For a moderated linear term (XZ), the increase in 
slope of the criterion Y on the predictor X is constant 
across levels of the predictor Z (see Figure 2, a1). 
For a moderated quadratic effect (XZ2), the slope of 
the criterion Y on the predictor X changes linearly 
across levels of the predictor X (Figure 2, b1).
Formally, the conditional effect γz of Y on X given  
Z = z is defined as

     (7)

where γz is the conditional effect of X on Y for the 
subgroup with value Z = z, Cov(Y,X | Z = z) is the 
conditional covariance between Y and X, and Var 
(X | Z = z) is the conditional variance of X. As can 
be seen from equation (7) the conditional covariance 
is proportional to the conditional effect. Based on 
the type of change of γz across different values of 
Z, an inference can be made regarding the type of 
moderated effect. For a model including a moderated 
linear effect (equation 1), it follows that 
       
     (8)

Thus, if γz depends linearly on Z, this is evidence for 
a moderated linear effect. 
For a moderated quadratic effect as in equation (2), 
the following equality holds:

     (9)

Thus, if γz depends quadratically on Z, then this 
would be evidence for a moderated quadratic effect.
In general, the conditional covariance or variance 
cannot be computed for continuous data without 

Figure 2 Regression surface of a model with a moderated 
quadratic effect (a) and a model with a moderated linear 
effect (b). In a1) and b1) the conditional effect of X on Y is 
illustrated for five levels of Z. The main distinctive features 
between the two moderated effects are depicted in a1) and 
b1): The moderated quadratic effect shows an increase in 
slope from Z=-2 to Z=0 and a decrease in slope from Z=0 
to Z=2, while the moderated linear effect is symmetric and 
shows a constant decrease of the slope from Z=-2 to Z=2
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additional assumptions. But, it can be computed 
when Z is categorical. Therefore, we use an 
approximation of the conditional covariance 
matrix by using a categorised version of Z. For the 
categorisation, the sample is split into five subgroups 
by collapsing scale values into more coarse 
classifications (cf. Butts & Ng, 2009). Compared 
with a moderated regression that uses continuous 
variables, the categorisation of a predictor variable 
leads to a loss of power and a reduction of effect size 
in this procedure (cf. MacCallum, Zhang, Preacher, 
& Rucker, 2002). Even so, for detecting moderated 
nonlinear effects by means of moderated regression 
analysis with all product terms of order 3 included, a 
very large sample size would be needed to detect the 
nonlinear effects. Such a very large sample size may 
be unrealistic to achieve in many research settings. 
Therefore, when sample size is relatively small, the 
proposed method may be the preferred choice for 
detecting moderated nonlinear effects. 
Here, we categorise the variable Z into five 
subgroups using thresholds at specific values z1 < z2 
< … < z4 (see Figure 3). 

For each of the five subgroups the conditional effect 
of X on Y given Z = z is estimated. 

                  (10) 
     

The interpretation of the conditional effect is the 
linear approximation of the average true effect for 
subjects in the subgroup zi ≤ z < zi+1. For the example 
with five subgroups in Figure 3, five conditional 
effects can be estimated. 
The varying slopes of the g different conditional 

effects across the five subgroups are an indication of 
the type of relationship as described above. Again, 
if the increase in slopes is quadratic, evidence for 
a moderated quadratic effect exists, while a linear 
slope is indicative of a moderated linear effect.

Models for data generation
Our example is based on a study by Baer and 
Oldham (2006). For our purposes, we used a subset 
of the predictors of the original study. We examined 
the relationship between creativity (creat) and 
creative time pressure (time) that is moderated by 
support for creativity (sup). Following the results of 
the study we generated data for two datasets. 

The first dataset (N = 400) was generated using 
the following population model which includes a 
moderated quadratic effect (sup×time2):

 

In order to keep the example as simple as possible 
we fixed the following effects to zero: sup2, 
sup2×time, sup3, and time3. The variables creative 
time pressure (time) and support for creativity (sup) 
were generated as standardised normally distributed 
variables with zero means and variances of one. 
The correlation between time and sup was set to ρ = 
-0.24. The variance of creativity (creat) was chosen 
such that the variance of creat was also one. Thus, 
the regression coefficients can be interpreted as 
standardised coefficients.

The second dataset was generated based on the 
following population model which includes no 
moderated quadratic effect, but a significant 
moderated linear effect (sup×time):

 

Here, we fixed the quadratic effect of support for 
creativity (sup2) to zero. This model which includes 
as a nonlinear effect only the moderated linear 
effect sup×time served as a comparison standard. 
For reasons of comparability, the original non-
significant moderated linear effect was resized such 
that its unique contribution to the variance accounted 
for was similar to the unique contribution of the 
moderated quadratic effect. 

Procedure
For both datasets, we categorised the moderator 
variables in order to receive five subgroups. We 
used the variable creative time pressure (creat) as 
grouping variable, and in the second trial we used 
the moderator variable support for creativity (sup) as 
grouping variable. The categorisation of the data was 
performed such that each subgroup contained 20% of 
the values of the grouping variable. As a result, we 
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Figure 3 Categorisation of a standardised normally distributed variable. The sample is split into 
five subgroups which all contain the same percentage of subjects



obtained five subgroups with a comparable number 
of observations. The five subgroups were then used 
for data analyses. A multi-sample analysis (MSA) 
was performed using the Mplus program (Muthén & 
Muthén, 1998-2010). We simultaneously regressed 
the criterion variable creativity (creat) on creative 
time pressure (time) in all five subgroups. Figure 4 
illustrates the MSA model for the conducted study.
The estimates of the conditional regression 
coefficient across all five subgroups were collected 
and used for the screening procedure. 

Hypothesis 1: For the first generated dataset which 
includes the moderated quadratic term support 
for creativity × creative time pressure2 (XZ2) we 
hypothesised that the relation between the criterion 
variable creativity (Y) and the predictor variable 
support for creativity (X) at different levels of the 
grouping variable creative time pressure (Z = z) 
follows a quadratic trend.

Hypothesis 2: For the second generated dataset 
which includes the moderated linear term support for 
creativity × creative time pressure we hypothesised 
that the relation between the criterion variable 
creativity (Y) and support for creativity (X) on the 
levels of the grouping variable creative time pressure 
(Z = z) follows a linear trend. 

Results

The quadratic change of the parameter γz across the 
five subgroups of creative time pressure that was 
postulated in hypothesis 1, could be confirmed for 
the relationship between the criterion variable Y and 
the moderator variable X as depicted in Figure 5. The 
value of the parameter γz increases from the first to 
the third subgroup, but decreases for groups 4 and 5. 
In this case the parameter γz describes a quadratic 
relationship across the five subgroups. Hypothesis 

2 could also be confirmed for the model which only 
contained a moderated linear effect. The value of the 
parameter γz decreases linearly from the first to the 
fifth subgroup. 

Discussion

In this article our goals were threefold. First, we 
wanted to give an introduction to the concepts 
of moderated linear (interaction) and moderated 
quadratic effects as higher-order effects are quite 
rarely investigated in empirical research. Two 
methodological problems associated with moderated 
quadratic effects were identified. The problem of 
multicollinearity between product terms, which 
occurs when the predictors X and Z are highly 
correlated, has the consequence that large standard 
errors and low power results. Another problem is 
concerned with spurious effects, which can occur 
when not all nonlinear terms necessary for the 
analysis of a complex nonlinear regression model are 
included in the regression equation. As pointed out 
by several authors (e.g., Klein et al., 2009), models 
with moderated linear effects should also include 
all additional nonlinear terms of the same order 
(second-order), i.e. both quadratic effects, and all 
lower-order terms, i.e. all linear effects. For models 
with third-order nonlinear effects, we argued that all 
effects of the same order, both moderated quadratic 
effects and two cubic effects, should be included 
in the regression equation together with all second-
order and linear effects. This helps researchers 
to avoid spurious effects that would occur when, 
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Figure 4 MSA model for the simulation study, where the latent predictor variable ξ equals x and 
the dependent latent variable η equals y. The linear relationship between η and ξ and therefore 
the relationship between y and x is analysed simultaneously along different intervals of the z 
variable. Here in five subgroups

Figure 5 Graphical representation of the relationship 
between γz across the five subgroups of creative time pressure 
(Z) for a model containing a moderated quadratic effect 
and a model containing only a moderated linear effect. The 
groups were built by categorising the predictor variable 
creative time pressure 



for example, a quadratic effect is present in the 
data but a moderator model is being investigated. 
Unfortunately, including all nonlinear effects leads to 
a low power, and large sample sizes are required to 
detect these effects. 

Second, we described analytically how moderated 
linear and moderated quadratic effects are 
distinguishable by using the conditional effects of 
X on Y across values of Z. Our semi-parametric 
screening procedure can be performed before a more 
complex nonlinear multiple regression model is 
selected. It does not require the functional form of 
the nonlinear relation.

Third, we investigated the screening procedure 
using artificial datasets based on empirical research 
by Baer and Oldham (2006) as a first test of the 
procedure’s performance. The results confirmed that 
a moderated quadratic effect between support for 
creativity × experienced creative time pressure² is 
rediscovered in our artificial dataset. The parameter 
γz reflects the slope between support for creativity 
and creativity in every subgroup of experienced 
creative time pressure. If the parameter γz shows a 
parabolic relation over the five subgroups of Z this 
is an indication for a moderated quadratic effect. To 
show that this relation was not caused randomly we 
formulated additionally a model with a moderated 
linear effect. In this model, the relation between 
the parameter γz over the subgroups of experienced 
creative time pressure was linear. This is an 
indication for a moderated linear effect in the dataset. 
For researchers this can in some circumstances be a 
helpful feature, because often there is only limited 
knowledge on a specific nonlinear effect. In this case 
the interpretation of the result depends on which 
nonlinear product variable was included in the 
analysis. If a true moderated quadratic effect exists 
in the data, but incorrectly only a moderated linear 
effect is included in the regression equation, this can 
lead to misleading interpretations of the relationship 
between two variables. The screening approach 
enables a researcher to decide whether to include a 
moderated nonlinear term or not. 

Before applying the procedure researchers should 
decide how many subgroups they want to use 
for detecting moderated nonlinear effects. The 
number of subgroups primarily depends on the 
original sample size of the study. On the one hand, 
each subgroup should consist of approximately 
80 subjects to produce unbiased estimates for the 
maximum-likelihood estimator. On the other hand, 
in order to identify a possible nonlinear trend in the 
data, at least five subgroups should be used. The 
number of subgroups needs to be an odd number. 
This has the advantage that there is a reference 

group with the mean of the unconditioned regression 
parameter z. Using only three subgroups would 
require large sample sizes, which are often not 
available; therefore, based on our experience, at least 
five groups appear necessary to produce reliable 
results.

Nevertheless there are some limitations of our 
research that need to be considered. Up to now 
the procedure is a descriptive procedure. Even if 
a specific moderated nonlinear effect was found 
in the data it cannot be assured that this effect will 
also be present in the population. Furthermore, 
the procedure is only concerned with moderated 
nonlinear effects; additive nonlinear effects cannot 
be detected by this method, because the slope of 
a conditional effect between X on Y does not vary 
across levels of Z (for a further discussion see Klein 
et al., 2009). As is usually done in analysing MSA, 
a chi-square difference test is applied that tests an 
equality constraint for the five conditional regression 
coefficients. With this constraint the difference 
between a nonlinear and a linear model is tested. 
For different types of nonlinear models, however, 
one cannot apply the MSA technique, because the 
different nonlinear models are not nested relative to 
each other. 

A limitation of regression analyses in general is that 
all variables are treated as if they were perfectly 
reliable (cf. Cohen, Cohen, West, & Aiken, 2003). 
Often, this assumption is violated in practice. The 
problem is even aggravated when nonlinear terms 
are added to the regression equation, because product 
terms are even less reliable than the variables that 
are used to form the products. The consequence 
is that the population regression coefficients are 
usually underestimated. Another limitation of 
regression analyses is that each construct is only 
measured by a single variable. Because constructs 
are generally quite heterogeneous they cannot be 
represented by a single indicator variable. Therefore 
structural equation modelling (SEM) could have an 
advantage. Over the last 20 years, several methods 
for the analysis of latent nonlinear models have 
been developed (cf. Jöreskog & Yang, 1996; Klein 
& Moosbrugger, 2000; Marsh, Wen, & Hau, 2004). 
These methods are able to estimate nonlinear 
effects on the level of latent variables without bias. 
However, larger sample sizes are needed to detect 
small nonlinear effects, especially when several 
nonlinear effects are included in the model. The 
consequence is that power is quite low such that 
large sample sizes are needed. Therefore nonlinear 
SEM may benefit greatly from a screening procedure 
that could be performed before analysing complex 
models. The development of a screening procedure 
for nonlinear SEM is our next project. 

Netherlands Journal of Psychology | Detecting moderated nonlinearity 112



References

Aiken, L. S., & West, S. G. (1991). Multiple Regression: Testing and 
interpreting interactions. Newbury Park, CA: Sage. 

Ajzen, I. (1991). The theory of planned behavior. Organizational 
Behavior and Human Decision Processes, 50, 179-211.

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and 
predicting social behavior. Englewood Cliffs: NJ: Prentice-Hall.

Ajzen, I., & Madden, T. (1986). Prediction of goal directed behavior: 
Attitudes, intentions, and perceived behavioral control. Journal of 
Experimental Social Psychology, 22, 453-474.

Allison, P. D. (1977). Testing for interaction in multiple regression. 
American Journal of Sociology, 83, 144-153.

Baer, M., & Oldham, G. R. (2006). The curvilinear relation between 
experienced creative time pressure and creativity: Moderating 
effects of openness to experience and support for creativity. Journal 
of Applied Psychology, 91, 963-970.

Blalock, H. M., jr. (1965). Theory building and the concept of 
interaction. American Sociological Review, 30, 374381.

Butts, M. M., & Ng, T. W. H. (2009). Chopped liver? OK. Chopped 
data? Not OK. In C. E. Lance & R. J. Vandenberg (Eds.), Statistical 
and methodological myths and urban legends: Doctrine, verity and 
fable in the organizational and social sciences (pp. 563-585). New 
York: Routledge.

Cohen, J., & Cohen, P. (1975). Applied multiple regression/correlation 
analyses for the behavioral sciences (2nd ed.). Hillsdale, NJ: 
Lawrence Erlbaum.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied 
multiple regression/ correlation analysis for the behavioral 
sciences. (3rd ed.). Mahwah, NJ: Erlbaum.

De Bruijn, G. J., Kremers, S. P. J., de Vries, H., van Mechelen, W., 
& Brug, J. (2007). Associations of social-environmental and 
individual-level factors with adolescent soft drink consumption: 
Results from the SMILE study. Health Education Research, 22, 
227-237. 

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and 

behavior: An introduction to theory and research. Reading, MA: 
Addison-Wesley.

Jöreskog, K., & Yang, F. (1996). Nonlinear structural equation models: 
The Kenny-Judd model with interaction effects. In G. Marcoulides 
& R. Schumacker (Eds.), Advanced structural equation modeling 
(pp. 57-87). Mahwah; NJ: Lawrence Erlbaum Associates.

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood 
estimation of latent interaction effects with the LMS method. 
Psychometrika, 65, 457-474.

Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., & Kelava, A. 
(2009). Assessing spurious interaction effects. In T. Timothy & 
M. S. Khine (Eds.), Structural equation modeling in educational 
research (pp. 13-28). Rotterdam: Sense Publishers.

Le, H., Oh, I. S., Robbins, S. B., Ilies, R., Holland, E., & Westrick, 
P. (2011). Too much of a good thing: Curvilinear relationships 
between personality traits and job performance. Journal of Applied 
Psychology, 96, 113-133.

MacCallum, R., & Mar, C. M. (1995). Distinguishing between 
moderator and quadratic effects in multiple regression. 
Psychological Bulletin, 118, 405-421.

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). 
On the practice of dichotomization of quantitative variables. 
Psychological Methods, 7, 19-40.

Marsh, H., Wen, Z., & Hau, K. T. (2004). Structural equation models 
of latent interactions: Evaluation of alternative estimation strategies 
and indicator construction. Psychological Methods, 9, 275-300.

Muthén, LK., & Muthén, B. O. (1998-2010). Mplus user’s guide  
(6th Ed.). Los Angeles, CA: Muthén & Muthén.

Wright, G. C., jr. (1976). Linear models for evaluating conditional 
relationships. American Journal of Political Science, 20, 349-373.

Salamin, A., & Hom, P. W. (2005). In search of the elusive U-shaped 
performance-turnover relationship: Are high performing Swiss 
bankers more liable to quit? Journal of Applied Psychology, 90, 
1204-1216.

Netherlands Journal of Psychology | Detecting moderated nonlinearity 113

KEVIN FISCHER
A student in the Department of Psychology at Goethe University 
Frankfurt, Germany. His research interests include nonlinear structural 
equation modelling and evaluation of goodness of fit measures. 

HOLGER BRANDT 
PhD candidate in the Department of Psychology at Goethe 
University Frankfurt, Germany. His research interests include 
nonlinear structural equation modelling, latent longitudinal models, 
and causal models for the identification of intermediate variables. 

KARIN SCHERMELLEH-ENGEL
Professor of the Department of Psychological Research Methods and 
Evaluation, at Goethe University Frankfurt, Germany. Her research 
focuses on nonlinear and linear structural equation modelling. Her 
research interests include confirmatory factor analyses, evaluation 
of model fit, multivariate statistics, construct validation, and 
psychological assessment. 

HELFRIED MOOSBRUGGER
Professor emeritis of the Department of Psychology at Goethe 
University, Frankfurt, Germany. His research focuses on test 
theory and psychological assessment as well as nonlinear structural 
equation modelling. His current research interests concern 
evaluation of model fit, evaluation of academic achievement, 
construct validation, and computer-based psychological assessment. 

ANDREAS KLEIN
Professor of the Department of Psychology at Goethe University 
Frankfurt, Germany. His research interests include statistical 
developments in the areas of nonlinear structural equation 
modelling, model fit, latent longitudinal models, and models for the 
detection of surrogate and mediator variables in causal relationships.



*Heymans Institute of 
Psychology, University of 

Groningen, the Netherlands, 
**Research Institute of Child 
Development and Education, 
University of Amsterdam, the 

Netherlands

Correspondence to: 
F.J. Oort, Research Institute of 

Child Development and 
Education, University of 

Amsterdam; Nieuwe 
Prinsengracht 130, 1018 VZ 

Amsterdam, the Netherlands, 
e-mail: f.j.oort@uva.nl

Netherlands Journal of Psychology / Multilevel exploratory factor analysis of discrete data  114

Exploratory factor analysis (EFA) can be used to determine the dimensionality of a set of items. When data come 
from clustered subjects, such as pupils within schools or children within families, the hierarchical structure of the 
data should be taken into account. Standard multilevel EFA is only suited for the analysis of continuous data. However, 
with the robust weighted least squares estimation procedures that are implemented in the computer program 
Mplus, it has become possible to easily conduct EFA of multilevel discrete data. In the present paper, we show how 
multilevel EFA can be used to determine the dimensionality in discrete two-level data. Measurement invariance 
across clusters implies equal dimensionality across levels. We describe two procedures, one with and one without 
measurement invariance restrictions across clusters. Data from educational research serve as an illustrative 
example.

Where: Netherlands Journal of Psychology, Volume 67, 114-121

Multilevel exploratory factor analysis 
of discrete data

Introduction

The dimensionality of a set of items can be defined 
as the minimum number of underlying unobserved 
(latent) variables that is needed to describe all 
relationships between all item responses (Lord & 
Novick, 1968; Zhang & Stout, 1999). If we restrict 
ourselves to linear relationships, then exploratory 
factor analysis (EFA) can be used to assess how 
many latent variables (or common factors) are 
needed to explain all item responses (e.g., Fabrigar, 
Wegener, MacCallum, & Strahan, 1999; Conway & 
Huffcutt, 2003). EFA is an appropriate technique to 
determine dimensionality because the EFA model 
is unconstrained, so that any misfit can only be 
attributed to the number of factors being too small. 
However, ordinary EFA is only suited for the analysis 
of normally distributed continuous item responses.

Item responses are generally discrete. Test items 
are often scored as ‘right’ or ‘wrong’, with binary 
codings 1 and 0. Or respondents give judgements 
on, for example, a three-point response scale with 
‘not applicable to me’, ‘somewhat applicable to 
me’, and ‘applicable to me’ scored as 1, 2, 3. Wirth 
and Edwards (2007) give an overview of estimation 
methods that can be used with discrete item 

responses. Some of these have been implemented in 
structural equation modelling computer programs 
such as Mplus (Muthén & Muthén, 2010), and so 
it has become feasible to conduct factor analysis of 
discrete variables. Barendse, Oort, and Timmerman 
(2012) conducted a simulation study of EFA of 
discrete variables and found that robust weighted 
least squares estimation with polychoric correlations 
worked well in assessing dimensionality.

In social and behavioural research, we often 
encounter hierarchically structured data, such as data 
from students in schools, children in families, or 
patients sharing the same physicians. Mixed model 
or multilevel analysis accounts for the dependencies 
in multilevel data (Snijders & Bosker, 1999). In 
the case of two-level data, the first level pertains to 
within-cluster variation (e.g., differences between 
students within schools) and the second level to 
between-cluster variation (e.g., differences between 
schools). Due to the work of Asparouhov and 
Muthén (2007), the robust weighted least squares 
estimation implemented in Mplus (Muthén & 
Muthén, 2010) can handle multilevel discrete data.

The purpose of this paper is to show how 
multilevel EFA analysis can be used to assess the 
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dimensionality of a set of discrete responses. We will 
describe two procedures. In the first procedure we 
separately assess the dimensionality of within-cluster 
variance and between-cluster variance, without any 
restrictions across levels. In the second procedure 
we assume measurement invariance across clusters, 
to make sure that the common factors have the 
same interpretation across clusters. Jak, Oort, and 
Dolan (2012a) have shown that this measurement 
invariance restriction implies measurement 
invariance across levels as well.

Both procedures will be illustrated with data 
from educational research on student-teacher 
relationships.

Methods

Below we briefly describe the two-level EFA model, 
the identification and estimation of its parameters, 
the evaluation of fit, the two procedures to assess 
dimensionality, and the rotation of a two-level 
EFA solution. We currently apply two-level EFA to 
discrete item responses, but the approach can also be 
applied to other variables (e.g., continuous scores, 
counts), and be extended to more than two levels.

With discrete data we assume that the observed 
discrete item responses are representations of 
continuous unobserved responses. That is, the vector 
of observed discrete item responses xij of individual 
i in cluster j is considered to be a representation of a 
vector of underlying continuous response variables 
yij, with associated thresholds that determine the xij 

values (e.g., Olsson, 1979; Muthén, 1984).

Model
In multilevel models, the underlying continuous 
variables yij are decomposed into cluster means μj, 
and individual deviations from the cluster means ηij:

yij = μj + ηij .    (1)

The individual deviations ηij are assumed to be 
independent of the cluster means μj so that variance-
covariance matrix of y, denoted Σ TOTAL (with 
variances and covariances across all clusters), is the 
sum of the variance-covariance matrix of μ, denoted 
Σ BETWEEN (with variances and covariances between 
clusters), and the variance-covariance matrix of η, 
denoted Σ WITHIN  (with variances and covariances 
within clusters),

Σ TOTAL = Σ BETWEEN + Σ WITHIN .   (2)

In two-level factor analysis, the between and within 
variance-covariance matrices can be separately 
modelled as

Σ BETWEEN = ΛB ΦB ΛB’ + ΘB ,   (3)
Σ WITHIN = ΛW ΦW ΛW’ + ΘW .   (4)

In Equation 3, ΦB is the variance-covariance matrix 
of the common between factors of the cluster means 
μ, ΛB is the matrix of factor loadings of the cluster 
means on these common between factors, and ΘB 
is the (diagonal) matrix with residual variances of 
the cluster means. In Equation 4, ΦW is the pooled-
within variance-covariance matrix of the common 
within factors of the individual deviations from the 
cluster means, ΛW is the pooled-within matrix of 
factor loadings of the individual deviations on these 
common within factors, and ΘW is the (diagonal) 
pooled-within matrix with residual variances of the 
individual deviations.

Measurement invariance
If we want to make sure that the interpretation of the 
common within factors is the same in all clusters, 
then we have to assume measurement invariance 
across clusters (i.e., in factor analysis of mean and 
covariance structures, intercepts and factor loadings 
of y-variables are the same across clusters; Muthén, 
1994; Rabe-Hesketh, Skrondal, & Pickles, 2004; 
Jak, Oort, & Dolan, 2012a, 2012b). Jak et al. (2012a) 
explain that measurement invariance across clusters 
implies equal factor loadings across levels (ΛW = ΛB 
= Λ), yielding the following two-level model:

Σ BETWEEN = Λ ΦB Λ’ ,   (5)
Σ WITHIN = Λ ΦW Λ’ + ΘW ,   (6)

where Λ is a matrix of factor loadings that is equal 
across all clusters and across the within and between 
levels, implying that common factors do have the 
same interpretation across all clusters and across 
levels. In addition, there is no residual variance at the 
between level (ΘB = 0), implying that no other factors 
than the common factors are affecting the between-
level responses (no ‘cluster bias’, Jak et al., 2012a).

Identification
In ordinary EFA, the (single level) model is 
identified with sufficient and necessary scaling and 
rotation constraints such as an identity matrix for 
the variance-covariance matrix of common factors 
(Φ = I) and echelon form for the matrix of factor 
loadings (Λ elements λpk = 0 if p < k). In two-level 
EFA (Equations 3 and 4), sufficient constraints are 
ΦW = I, ΦB = I, and echelon form for both ΛW and 
ΛB. However, if we assume measurement invariance 
(ΛW = ΛB = Λ, and ΘB = 0), then we can estimate 
the variances of the common factors at the between 
level (i.e., diagonal(ΦB) free instead of ΦB = I). In 
addition, we can choose either
-  to estimate the full factor loading matrix instead of 

having an echelon form (Λ full free instead of Λ 
echelon), or
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-  to estimate correlations between the common 
factors at the within level (diagonal(ΦW) = I 
instead of ΦW = I), or

-  to estimate covariances between the factors at the 
between level (ΦB symmetrical free instead of ΦB 
diagonal free).

Estimation
The computer program Mplus provides various 
estimation methods for SEM with discrete data 
(Muthén & Muthén, 2010), such as the so-called 
weighted least squares estimation method with a 
robust mean-and-variance corrected chi-square fit 
criterion (WLSMV; Muthén, du Toit, & Spisic, 
1997), which has been advocated in previous 
simulation studies (e.g., Beauducel & Herzberg, 
2006; Barendse, et al., 2012). Asparouhov and 
Muthén (2007) developed a method for multilevel 
data that can be applied to discrete data, using 
polychoric correlations. To compare nested 
multilevel models, one should use the estimation 
method with a mean-corrected chi-square fit criterion 
(denoted WLSM; rather than the mean-and-variance 
corrected WLSMV), as only WLSM provides a 
valid chi-square statistic to test the difference in fit 
of nested multilevel models (Muthén, 1998-2004; 
Satorra & Bentler, 2001).

Evaluation of fit
As the evaluation of fit of multilevel models for 
discrete data is still subject to study, we resort to 
fit criteria that are commonly applied in structural 
equation modelling. A significant chi-square test 
of overall goodness-of-fit indicates that the model 
does not fit the data (i.e., the hypothesis of exact 
population fit is rejected). In addition to the chi-
square test of exact fit, we can use the root mean 
square error of approximation (RMSEA) as an 
index of approximate fit. RMSEA values below 
0.08 and 0.05 indicate satisfactory and close fit, 
respectively (Browne & Cudeck, 1992). We will 
also report the standardised root mean square 
residual (SRMSR) and its weighted counterpart 
(WRMSR), which indicate the difference between 
the polychoric correlations and the correlations 
implied by the EFA model. SRMSR values below 
0.05 (e.g., Sivo, Fan, Witta, & Willse, 2006) and 
WRMSR values below 1.0 (Yu & Muthén, 2002) 
are considered acceptable.

The difference in fit of two hierarchically related 
models (or nested models) can be tested with the chi-
square difference test. We should note, however, that 
with WLSM estimation, this chi-square difference is 
subject to a scaling correction and cannot be calculated 
by simply taking the difference of the two chi-square 
values that are associated with the fit of two models 
(Muthén, 1998-2004; Satorra & Bentler, 2001).

Dimensionality assessment
We describe two procedures to determine the 
dimensionality of two-level data.

Procedure 1. The first procedure has two steps. 
In the first step, we leave Σ BETWEEN free to be 
estimated, impose an exploratory factor model on 
Σ WITHIN (Equation 4), and fit a series of models with 
increasing numbers of common within factors to 
determine the minimum number of common within 
factors that provides good fit. In the second step, 
we retain the minimum number of common within 
factors (determined in the first step), and fit a series 
of models with increasing numbers of common 
between factors to determine the minimum number 
of common between factors that provides good fit.

Procedure 1 may yield a different number of between 
factors than the number of within factors. So, the 
dimensionality of the between structure may be 
different from the dimensionality of the within 
structure. Still, even if the dimensionality is the 
same across levels, the interpretation of the between 
factors is different from the interpretation of the 
within factors as ΛW and ΛB are different. Moreover, 
the interpretation of the factors across clusters is not 
the same either, as the values of the ΛW elements are 
pooled within values. Matrix ΛW can be interpreted as 
the average of as many cluster specific Λ matrices as 
there are clusters. So, in theory, the ΛW interpretation 
may not apply to any of the individual clusters at all.

Procedure 2. In Procedure 2 we require measurement 
invariance across clusters, which implies ΛW = 
ΛB and ΘB = 0 (Jak et al., 2012a). With these 
restrictions, we fit a series of two-level EFA models 
to Σ WITHIN and Σ BETWEEN as given by Equations 5 and 
6, with increasing numbers of common factors, to 
determine the minimum number of common factors 
that provides good fit. Due to the measurement 
invariance restriction, the common factors have the 
same number and the same interpretations across all 
clusters and across both levels.

Rotation
Just as in ordinary (single level) EFA, the solution 
can be rotated to facilitate interpretation. If the 
solution is obtained through Procedure 1, using the 
two-level EFA given by Equations 3 and 4, with both 
ΦW and ΦB equal to identity and both ΛW and ΛB 
having echelon form, then the within and between 
solutions can be rotated separately, in the same way 
as in ordinary EFA (Browne, 2001; Oort, 2011).
If the solution is obtained through Procedure 2, 
using the two-level EFA given by Equations 5 and 6, 
with ΦW identity, ΦB free, and Λ echelon, then we 
preserve the identical interpretation of within and 
between factors by rotating the within and between 
structures together. Application of a rotation criterion 
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as desired to the echelon Λ yields a transformation 
matrix T, and rotated factor loadings Λ* and 
variance-covariance matrices ΦW* and ΦB*,

Λ* = Λ T ,    (7)

ΦW* = (T-1)(T-1)’ = (T’ T)-1 ,   (8)

ΦB* = (T-1) ΦB (T-1)’ .   (9)

See Browne (2001) for a comprehensive explanation 
of rotation in EFA.

Illustration

As an illustrative example, we apply multilevel EFA 
to data that were gathered with the student-teacher 
relationship scale (STRS; Koomen, Verschueren, 
Van Schooten, Jak, & Pianta, 2011). We have 
complete data from 649 teachers who reported 
about their relationships with two or three children 
each, 1493 children in total, aged 3 to 12. The 28 
items of the STRS are hypothesised to capture three 
aspects of the student-teacher relationship: closeness, 

conflict, and dependency. The items have five-point 
response scales, ranging from 1 (‘definitely does not 
apply’) to 5 (‘definitely does apply’).

Preliminary analysis
First we check whether the between-level variances 
and covariances are sufficiently large to warrant 
a multilevel analysis. Intra-class coefficients of 
the item responses vary between 0.15 and 0.49. 
Furthermore, we fitted a Null Model (Σ BETWEEN = 0, 
Σ WITHIN free) to test whether there is between-level 
variance, and an Independence Model  
(Σ BETWEEN diagonal, Σ WITHIN free) to test whether 
there is between-level covariance. Neither model fits 
the data: Null Model chi-square = 4547.4, df = 389, 
p < 0.001, RMSEA = 0.085; Independence Model 
chi-square = 4195.0, df = 378, p < 0.001, RMSEA 
= 0.082. As the intra-class coefficients are high and 
the Null Model and Independence Model do not fit 
the data, we conclude that these data require a model 
that accounts for the two-level hierarchical structure 
of the data.

Procedure 1 within-level results
Table 1 gives the fit results (chi-square, RMSEA, 

Number  Number                         SRMSR         Chi-square difference test  
of within  of between
factors  factors  DF  Chi-square RMSEA  Within Between  WRMSR  Chi-square DF Prob.

Series 1                

1  n/a  350  13737.605 0.160  0.169 -  3.122  -  -   -

2  n/a  323  2302.291 0.064  0.059 -  1.061  16647.295 27  0.000

3  n/a  297  827.289 0.035  0.033 -  0.591  619.279 26  0.000

4  n/a  272  576.248 0.027  0.028 -  0.480  181.013 25  0.000

5  n/a  248  464.731 0.024  0.024 -  0.421  88.807 24  0.000

Series 2                

3  1  647  3086.883 0.050  0.033 0.180  1.182   -  -  -

3  2  620  1332.493 0.028  0.033 0.077  0.685  338.595 27 0.000

3  3  594  1300.727 0.028  0.033 0.067  0.665  43.458 26 0.017

3  4  569  1258.966 0.028  0.033 0.061  0.650  44.247 25 0.010

3  5  545  1223.605 0.029  0.033 0.058  0.639  37.789 24 0.036

Series 3                

1  1  755  14252.961 0.109  0.170 0.589  3.483   -  -   -

2  2  726  4018.500 0.055  0.062 0.304  1.677  2004.806 29 0.000

3  3  697  2705.744 0.044  0.048 0.291  1.236  325.442 29 0.000

4  4  668  1923.310 0.035  0.034 0.278  0.920  198.966 29 0.000

5  5  639  1590.571 0.032  0.032 0.244  0.760  125.307 29 0.000

Note: 1493 pupils are rated by 649 teachers.

Table 1 Series of multilevel exploratory factor analyses to determine the dimensionality
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SRMSR, WRMSR) for three series of two-level EFA 
models. In the first series, Σ BETWEEN is unrestricted 
and Σ WITHIN conforms a one-, two-, three-, four-, or 
five-factor model (as in Equation 4). The chi-square 
test is consistently significant, indicating that none of 
the models fits the data exactly. However, the RMSEA 
indicates satisfactory fit of the two-factor model and 
close fit of the three-factor model. The SRMSR and 
WRMSR indices also suggest acceptable fit of the 
three-factor model. We therefore continue Procedure 1 
with three factors at the within level.

Procedure 1 between-level results
In the second series, Σ WITHIN is restricted to a three-
factor model (Equation 4), and Σ BETWEEN is restricted 
to either a one-, two-, three-, four-, or five-factor 
model (Equation 3). For each of these models, the 
chi-square test of exact fit is significant, but due 
to the gain in degrees of freedom, the relative fit 
is much better than in the first series of models. 
According to the RMSEA we would select the EFA 
model with three within factors and two between 
factors.

The chi-square difference test indicates that exact 
fit keeps improving with each additional between 
factor, but only if we test a 5% level of significance. 
When testing at a 1% level of significance, we 
would also select the EFA model with three within 
factors and two between factors, because at 1%, 
an additional between factor does not significantly 
improve exact fit. The same model is also suggested 
by the WRMSR, but the between-level SRMSR does 
not fall below 0.05 for any of the models.

Procedure 2 measurement invariance results
In the third series of models we impose measurement 
invariance restrictions and fit two-level EFA 
models as given by Equations 5 and 6, with 
increasing numbers of factors. All chi-square tests 
are significant, thereby rejecting exact fit. The 
three-factor model is the first model that meets the 
RMSEA criterion of close fit (RMSEA < 0.05). 
The same model also meets the SRMSR criterion 
(SRMSR < 0.05), but only for the within part. The 
WRMSR criterion (WRMSR < 1.0) suggests a  four-
factor model, but ΦB estimates for this model have 
unreasonably high standard errors.

Relying on the RMSEA index of fit and on the 
substantive argument that the STRS is supposed to 
cover three aspects of student-teacher relationships, 
we prefer the three-factor model.

The three-factor EFA model with measurement 
invariance restrictions is nested under the three-
within three-between factor model without 
measurement invariance restrictions in the second 
series. According to the Satorra and Bentler 

(2001) chi-square difference test, the hypothesis of 
measurement invariance should be rejected (chi-
square difference = 582.7, df = 103, p < 0.001). 
However, as the RMSEA nevertheless indicates 
close fit for the restricted model as well, we still 
prefer the measurement invariant EFA model.

Rotation results

A substantive interpretation of the common factors 
that is valid across all clusters requires measurement 
invariance. To facilitate the interpretation of the 
three-factor two-level EFA model with measurement 
invariance (Equations 5 and 6), we use the oblimin 
criterion to rotate the solution (Browne, 2001). As 
student-teacher relationship factors are likely to be 
correlated, we opted for oblique rotation, rather than 
orthogonal. Rotation results are given in Table 2.

From Table 2 it appears that almost all conflict, 
dependency, and closeness items have their highest 
loadings on the first, second, and third factor. We 
have therefore named these factors ‘Conflict’, 
‘Dependency’, and ‘Closeness’. Oblique rotation 
yields correlated factors. The correlations between 
the factors Conflict and Dependency (0.39 within 
level and 0.76 between level), and between Conflict 
and Closeness (-0.40 within level and -0.64 
between level) are substantial. Conspicuously, the 
within-level correlation between Dependency and 
Closeness is positive (0.17), albeit small, whereas 
the between-level correlation is negative (-0.23), 
showing a difference in the sign of the correlations 
between judgements of pupils on the one hand and 
judgements by teachers on the other hand. We note 
that Koomen et al. (2011) found a zero correlation 
between Dependency and Closeness, but they 
neglected the two-level structure of the data and 
conducted a confirmatory factor analysis with  
simple structure.

Discussion

In this paper, we have proposed and illustrated two 
EFA procedures to determine the dimensionality of 
multilevel discrete data. The first procedure does 
not involve any across level restrictions, leaving 
room for different within-level and between-level 
factor solutions. In that case, the within-level factor 
loadings (ΛW) should be interpreted as a summary 
of all possible individual cluster factor loadings. 
In the second procedure we assume measurement 
invariance, to make sure that factors have the same 
interpretation across all clusters. This assumption 
entails across-level invariance of within-level and 
between-level factor loadings (ΛW = ΛB).
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Without the measurement invariance restriction, 
common factors may not have the same 
interpretation across clusters, or across levels, giving 
room to so-called ‘cluster bias’ (Jak et al., 2012a, 
2012b). In the presence of cluster bias, differences 

between test scores are not completely attributable to 
differences in the trait(s) one intended to measure. In 
our student-teacher relationships example, different 
STRS item scores should be fully explained by 
differences in scores on the common factors that 

Table 2 Exploratory factor analysis of 28 items of the Student-Teacher Relationship Scale (STRS; 649 teachers and 1493 pupils): Oblimin 
rotation of a three-factor two-level model with measurement invariance

Within- and between-factor loadings (ΛW = ΛB)    

Items        Conflict  Dependency Closeness

Closeness items    
I share an affectionate, warm relationship with this child     -0.485   0.050  1.415
If upset, this child will seek comfort from me     0.080   0.052  1.131
This child is uncomfortable with physical affection or touch from me    0.013   -0.038  0.601
This child values his/her relationship with me      -0.206   -0.045  1.200
When I praise this child, he/she beams with pride     0.190   -0.066  0.780
This child is overly dependent on me      -0.442   0.379  0.706
This child tries to please me       -0.009   0.014  1.031
It is easy to be in tune with what this child is feeling     0.113   0.076  1.315
This child openly shares his/her feelings and experiences with me     -0.514   0.107  1.104
This child allows himself/herself to be encouraged by me    0.014   0.147  0.746
This child seems to feel secure with me      -0.466   -0.067  1.225
Conflict items    
This child and I always seem to be struggling with each other    1.369   -0.071  -0.127
This child easily becomes angry with me      1.293   0.059  0.106
This child feels that I treat him/her unfairly      1.313   0.024  -0.118
This child sees me as a source of punishment and criticism    0.943   0.240  -0.423
This child remains angry or is resistant after being disciplined     1.477   0.022  0.134
Dealing with this child drains my energy       1.957   -0.014  0.067
When this child is in a bad mood, I know we’re in for a long and difficult day  1.583   0.176  0.163
This child’s feelings toward me can be unpredictable or can change suddenly  1.572   0.133  -0.117
Despite my best efforts, I’m uncomfortable with how this child and I get along   1.187   0.176  -0.838
This child whines or cries when he/she wants something from me.    0.644   0.713  -0.160
This child is sneaky or manipulative with me     0.918   0.099  -0.390
Dependency items    
This child reacts strongly to separation from me     0.050   0.672  0.069
This child is overly dependent on me      -0.373   1.609  -0.203
This child asks for my help when he/she really does not need help     0.241   0.619  0.099
This child expresses hurt or jealousy when I spend time with other children  0.525   0.650  -0.022
This child fixes his/her attention on me the whole day long     0.039   0.898  0.209
This child needs to be continually confirmed by me     0.156   0.685  0.028

                 Within-factor correlations (ΦW)                 Between-factor correlations ( ΦB)

 Conflict Dependency Closeness Conflict Dependency  Closeness

Conflict 1.000   0.201 
    (1.000) 
Dependency 0.391 1.000  0.314 0.857 
    (0.757) (1.000) 
Closeness  -0.402 0.173 1.000 -0.197  -0.114    0.466

    (-0.644) (-0.228)   (1.000)

* Correlations are given within parentheses; factor loadings > 0.6 are in bold type set; residual variances (ΘW) not shown.
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we named Conflict, Dependency, and Closeness. If 
there is cluster bias then apparently other between 
factors, such as the sex of the teacher or size of the 
class, also directly affect the STRS item scores. 
Cluster bias in item responses would then invalidate 
comparisons of groups that differ in, for example, 
teacher sex or class size.

In the illustrative analysis of the STRS data, the 
hypothesis of measurement invariance in the three-
factor two-level EFA is rejected by the chi-square 
difference test (WLSM chi-square difference = 582.7, 
df = 103, p < 0.001). With higher dimensional models, 
the hypothesis is rejected as well (four-factor WLSM 
chi-square difference = 562.8, df = 124, p < 0.001; 
five-factor WLSM chi-square difference = 603.4, 
df = 143). This suggests that measurement invariance 
does not really hold (in the population). However, 
considering the fit criteria that indicate close fit, we 
still prefer the three-factor measurement invariant 
EFA model, especially because the measurement 
invariance restriction is substantively important. 
Without this restriction we cannot validly interpret 
the within-level EFA results, and therefore we are 
willing to sacrifice exact fit for interpretability.

The evaluation of fit of multilevel models to discrete 
data is still subject to study, with inconclusive 
results, both in the structural equation modelling of 

discrete data and in the structural equation modelling 
of multilevel data. Fit measures of multilevel models 
express the combined (mis)fit at multiple levels. As 
there are many more observations at the within level 
than at the between level, the within level has more 
influence on the overall fit than the between level. 
Ryu and West (2009) and Boulton (2011) proposed 
level-specific fit measures for multilevel structural 
equation modelling (e.g., SRMSR within and 
SRMSR between). As yet, it is most sensible not to 
rely on a single fit criterion, and to take the within- 
and between-level sample sizes into account.

In the present study we combined the challenges 
of multilevel data and discrete data. Our example 
analysis shows that it is possible to conduct 
EFA with multilevel discrete data, that it yields 
interpretable results, but that the evaluation of fit is 
partly subjective.
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Several statistical models exist to study panel dropouts with respect to the underlying missing data mechanism. 
The paper discusses two models which extend the classical growth curve model: the selection model and the 
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not missing at random. With decreasing delinquency the results suggest that the dropout process is missing at 
random. In addition, the pattern mixture model is able to identify the class of respondents with the highest 
amount of dropouts which are also those ones which reach the highest delinquency rates in the entire time  
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Growth curve models and panel 
dropouts: Applications with  
criminological panel data

Introduction

Several research attempts has been made to cope 
with missing data for different survey designs. The 
methodological literature has mostly discredited 
simple and easy to use methods that discard 
incomplete cases from the substantive analysis 
(listwise or pairwise deletion of missing data) or 
techniques that replace the missing values with a 
single set of values (e.g., mean imputation). More 
advanced techniques such as multiple imputation 
or full information maximum likelihood have been 
proposed as appropriate under certain conditions 
relating to the mechanisms that produce the missing 
data (for an overview see Enders, 2010).

Rubin (1987) distinguishes three different missing 
data mechanisms: missing completely at random 
(MCAR), missing at random (MAR) and not missing 
at random (NMAR). Following the notation of Little 
and Rubin (2002) the vector of observed data is 
Yobs; the vector of missing data is Ymis: Y = (Yobs,Ymis). 

A missing data matrix M(=Mi j) provides the 
information if, for a person i, the value of a variable 
j is missing (Mi j=1) or not (Mi j=0). ψ denotes 
the parameter vector influencing the probability 
of missing data. θ contains the parameters of 
substantive interest.

The missing data mechanism is MCAR when the 
probability of missing values on a variable does 
not depend either on the observed values Yobs or 
the missing values Ymis: f (M|Y, ψ) = f (M|ψ). The 
assumption of MCAR is required with listwise 
deletion since observed values for cases with missing 
values on variables under study are discarded. 
Under MCAR complete cases are a simple random 
sample of all cases. The missing data mechanism 
is MAR when the probability of missingness 
depends on the observed values, but is unrelated 
to the missing values: f (M|Y, ψ) = f (M|Yobs, ψ). 
Additionally it is required that θ and ψ are distinct 
parameters. MAR is a weaker assumption than 
MCAR. If the missing data mechanism is MAR 
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likelihood-based conclusions about the parameters 
of substantive interest (θ) are possible without 
information about the parameters ψ that govern 
the missing data process (Little & Rubin, 2002, p. 
119). Full information maximum likelihood and 
multiple imputation produce unbiased parameters 
under MAR. In contrast to listwise deletion (LD) 
available data are employed. Finally, the process of 
missingness is not missing at random (NMAR)  
when the process of missingness also depends on  
the missing values themselves: f (M|Y, ψ) = f 
(M|Ymis,Yobs, ψ). The missing data mechanism 
cannot be ignored because the missing data contain 
information about the substantive parameters  
theta.

In case of NMAR it is necessary to explore and 
model the missing data mechanism together with 
the substantive application. Selection models and 
more advanced variants of pattern mixture models 
for panel data were recently discussed within the 
context of Psychology and Methodology (Enders, 
2010; Enders, 2011; Muthén, Asparouhov, Hunter, 
& Leuchter, 2011). These models are extensions of 
the classical growth curve model which is able to 
separate intra- and interindividual development of 
observed measurements (Meredith & Tisak, 1990).

Based on these discussions this paper focuses on 
applications of a selection and a pattern mixture 
model for criminological panel data to explore 
whether permanent and temporary panel attritions 
are due to MAR or NMAR mechanisms. The 
following section starts with a brief description 
of the latent growth curve model followed by the 
extensions to selection and pattern mixture models. 
Then the criminological panel data used for the 
applications are described, followed by the results 
of the models estimated with the program Mplus 
(Muthén, 1998-2010). Finally, a discussion and 
concluding remarks will be provided.

Models

Growth curve models
The possibility that the individual trajectories of 
a dependent variable can vary is one of the main 
advantages of the growth curve model. The formal 
representation of a growth curve model can be seen 
either as a multilevel, random-effects model or as a 
latent variable model, where the random effects are 
latent variables (Meredith & Tisak, 1990, p. 108; 
Willett & Sayer, 1994, p. 369):

yi = Ληεi     (1)

yi is a t × 1 vector of repeated measurements for 
observation i where t is the number of panel waves. 
η is a q × 1 vector of latent growth factors where q is 
the number of these factors. ε is a t × 1 vector of time-
specific measurement errors, and Λ is the t × q matrix 
of factor loadings with fixed coefficients representing 
the functional form of the individual trajectories. 
Variations of individual trajectories are captured by 
q-numbers of latent variables η whereas usually η1 
is the intercept, η2 is the linear slope and in case of 
nonlinear development η3 represents the quadratic 
slope (cf. Figure 1).1 If applicable, additional latent 
variables can be specified. It is assumed that the 
latent growth factors and measurement errors are 
independent and multivariate normally distributed: 

      (2)

where α is a q × 1 vector of growth factor means and 
Ψ is the respective q × q covariance matrix. Θ is a p 
× p covariance matrix of time-specific measurement 
errors which are usually constrained to be a diagonal 
matrix. For estimation a probability density function 
is used:

f (yi) = φ [yi; µ(θ), Σ(θ)]   (3)

where φ is the probability density function for yi and 
θ is the vector of all parameters to be estimated. µ(θ) 
is a p × 1 model-implied mean vector given by

µ(θ) = Λα    (4)

and Σ(θ ) is a p × p model-implied covariance matrix 
given by

Σ(θ) = ΛΨΛt + Θ    (5)

Parameters in θ can be estimated by ML, 
maximising the likelihood that the measurements yi 
are drawn from a multivariate normal distribution. 
The means of the latent growth factors α show the 
average development of the measurement yi across  
p panel waves within a homogenous population.

Selection and pattern mixture models
For regression analyses the selection model of 
Heckman (1976, 1979) is often applied as a bias 
correction method with NMAR data on the particular 
variable under study. This selection model has 

1 I prefer to discuss the growth curve model with three latent variables η because the observed variable yt in 
the applications in the next section shows a nonlinear development over time.
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two parts: one part consists of the substantive 
regression equation, the other part predicts the 
response probabilities with an additional equation. 
Selection models for longitudinal data also combine 
a substantive model with additional equations to 
predict the missingness of the data. In this paper 
missingness refers to permanent or temporary 
dropout from a panel study. The substantive part 
of the model can be analysed with growth curves 
whereas the methodological part of the model 
contains logistic regressions predict the missing 
data indicators. Numerous model formulations are 
discussed throughout the statistical literature but two 
longitudinal selection models have been proposed 
and applied recently (Enders, 2010, p. 304f.; Enders, 
2011, p. 7):
1 The selection model of Wu and Carroll (1988) 

uses growth curve variables to predict the 
probability of missing data. This model contains 
missing data indicators Rt which denote whether 

the observed variable y at a particular panel wave 
t is observed or not. The indicator variables are 
regressed on the growth curve part of the model 
via logistic or probit regression equations. If 
panel data with five waves are used the model 
contains five observed variables (y1,…….,y5) and 
five indicator variables (R1,…...,R5). Here, the 
probability to remain in the panel is dependent 
on the random coefficients of the developmental 
process. For example, the higher the linear 
slope the more probable are the dropouts of 
respondents. Linking the response probabilities 
to the growth curve variables might be useful 
when the dropout process depends on the overall 
trajectory (for applications see Enders, 2011 
and Reinecke, 2012). The model assumes that 
observed variables yt are uncorrelated with 
indicator variables Rt. Detection of a specific 
MAR or NMAR dropout mechanism related 
to particular panel waves seems to be difficult. 
In addition, variances of the quadratic terms of 
the models are often too small to explain the 
probability of missingness. Therefore, the model 
of Wu and Carroll (1988) will not be considered 
for the applications.

2 The selection model of Diggle and Kenward 
(1994) contains the same variables but the 
indicator variables Rt are regressed directly 
on the observed variables yt as well as on the 
lagged variable yt−1 (Figure 2). The significance 
of the logistic regression coefficients (dashed 
lines in the figure) allows conclusion about 
the missing data mechanism: If there are no 
relationships between yt, yt−1 and Rt, the dropouts 
are unrelated to the observed variables which 
would follow a MCAR mechanism. If the lagged 
variable yt−1 has an potential impact on Rt, the 
mechanism is MAR. That means, dropout at 
time t is related to the observed values from the 
previous panel wave. If significant within-wave 
relationships between Rt and yt are detected, a 
NMAR mechanism is plausible. That means 
dropout at time t is related to the observed values 
from the same panel wave. The model assumes 
a multivariate normal distribution for the 
continuous variables yt.

An alternative framework to model NMAR dropout 
mechanism is the pattern mixture model. This 
approach defines subgroups of cases with the same 
missing data pattern and estimates the substantive 
model within each group or pattern. The pattern-
specific estimates can be averaged across the 
groups to get a single set of estimates that account 
for the NMAR mechanism (cf. Enders, 2010, p. 
299). But, some of the parameters are not estimable 
and identifying restrictions have to be specified. 
Combining the indicator variables Rt with a quadratic 

Figure 1 Quadratic growth curve model for t panel waves

Figure 2 Quadratic growth curve model with indicator variables according to Diggle and 
Kenward (1994)
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growth curve model leads to some non-identified 
parameters (e. g. the means of the linear and 
quadratic slope for respondents dropping after t1 
and the mean of the quadratic slope for respondents 
dropping out after t2, see Muthén et al., 2011, p 20). 
Equality restrictions to other dropout patterns can 
be applied and solve the identification problem. 
Despite of the fact that wrong restrictions can lead to 
substantial bias the pattern mixture model assumes 
that every respondent with the same dropout time 
has a common distribution, i. e. the sample under 
study is homogenous in that respect. To overcome 
this assumption of homogeneity Roy (2003) 
proposed a latent dropout pattern mixture model 
where a class variable c is influenced by the dropout 
indicators Rt (Figure 3). Variables Rt and latent class 
variable c are connected via a multinomial logistic 
regression model:

     (6)

Equation 6 estimates the probability that a panel 
dropout for a particular class is higher or lower 
than for the reference class. Latent class variable c 
itself influences the latent growth curve variables 
and models the unobserved heterogeneity of the 
development under study. Instead of considering 
individual variation of single means of the vector η 
the so-called growth mixture model (GMM) allows 
different classes of individuals to vary around 
different means (Muthén & Shedden, 1999): 

yik = Λkηjk + εik      (7)

Parameters of the model are estimated for k = 
1,…,. K latent classes. The number of categories of 
class variable c represent the degree of unobserved 
heterogeneity in the data. The probability density 
function for the GMM is a finite mixture of normal 
distributions:

           K
f (yi) = ∑ πkφk[yi; µk(θk)Σ(θk)]   (8)
          k=1

πk is the unconditional probability that a 
measurement belongs to latent class k, φk is the 
multivariate probability density function for latent 
class k. µk(θk) represents the model-implied mean 
vector given by

µk(θk) = Λkαk    (9)

and Σk(θk) is the model-implied covariance matrix 
given by

Σk(θk) = ΛkΨkΛk
t + Θk.                (10)

The mixture model of Roy (2003) makes explicit 
use of the GMM and proposes that the dropout 
mechanism is related to the mixture of the growth 
curves.

The model is estimated by maximising the log 
likelihood function within the admissible range 
of parameter values given classes and data. The 
program Mplus uses the principle of maximum 
likelihood estimation and employs the EM algorithm 
for maximisation (Dempster, Laird, & Rubin, 1977; 
Muthén & Shedden, 1999).2 For a given solution, 
each individual’s probability of membership in each 
class is estimated. Individuals can be assigned to 
the classes by calculating the posterior probability 
that an individual i belongs to a given class k. Each 

2 The integration method of Mplus tests several sets of starting values evaluating the maximum initial stage 
log likelihood value. The seed number corresponding to that value is used for the final estimation of the 
model. For re-estimation of the model parameters the optimal seed value of the previous run can be included 
in the input file (for details see Muthén, 1998-2004).

Figure 3 Latent dropout pattern mixture model (Roy, 2003)
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individual’s posterior probability estimate for each 
class is computed as a function of the parameter 
estimates and the values of the observed data 
(Muthén, 1998-2004).

It is always an empirical question how many classes 
are sufficient to describe the unobserved heterogeneity 
of the data. By classifying each individual into his 
most likely class, a table with rows corresponding 
to individuals classified into a given class can be 
constructed. The columns of that table show the 
average conditional probabilities to be in the particular 
class. Quality of the classification is summarised by 
the entropy measure Ek (Muthén, 1998-2004), which 
ranges from zero to one, where values close to one 
indicate a good classification of the data.

In mixture models a k class model is not nested 
within a k + 1 group model. Therefore, conventional 
mixture tests like the Akaike Information Criterion 
(AIC; Akaike, 1987), the Bayesian Information 
Criterion (BIC; Schwarz, 1978) or the sample-
size adjusted Bayesian Information Criterion 
(SABIC; Sclove, 1987) have to be used for model 
comparisons.3 If the k-class model contains a 
redundant class, the k − 1-class model with the 
smaller AIC, BIC or SABIC value should be chosen. 
An expansion of the model by adding a class is 
desirable only if the resulting improvement in the log 
likelihood exceeds the penalty for more parameters. 
But accepting or rejecting a model on the basis of the 
information criteria is more or less descriptive and 
does not imply any statistical test.

Lo, Mendell, and Rubin (2001) proposed a 
likelihood ratio-based method for testing k − 1 
classes against k classes in mixture models. The 
Lo-Mendell-Rubin likelihood ratio test (LMR- LRT) 
considers the usual likelihood ratio for testing the 
k − 1 model against a k model but with the correct 
distribution. The p-value from the test represents 
the probability that H0 is true, i.e., that the model 
is sufficient with one less class. Therefore, a low 
p-value indicates that the k − 1 class model has to be 
rejected and the k-class model can be accepted for 
substantive interpretations. Information criteria and 
the LMR-LRT will be used for the selection of the 
appropriate number of classes on the Roy model.

Data

The selection and pattern mixture model of Diggle 
and Kenward (1994) and Roy (2003) will be applied 
with data from the Study ‘Crime in the modern City’ 

(CrimoC, see Boers, Reinecke, Mariotti, & Seddig, 
2010). This ongoing prospective panel study started 
in 2002 in Duisburg, an industrial city of 500,000 
inhabitants in western Germany, with nine annual 
data waves having been collected. The annual survey 
started in 2002 with 3411 pupils from the 7th grade 
of all school types. Their mean age was 13. 70% 
of the schools (40 out of 57) agreed to participate. 
From these, 87% of the 7th-graders participated in 
the first year, which represented 61% of all 7th-
graders in Duisburg. In subsequent years, the rates of 
participation ranged from 84% to 92%.

The CrimoC study contains panel datasets covering 
different numbers of panel waves. The following 
analyses stem from a five-wave panel dataset 
covering the period from late childhood (conducted 
in the year 2002) to late adolescence (conducted in 
the year 2006). A panel dataset with the minimum 
information from at least two out of five panel waves 
contains 3909 persons. This dataset has 23 different 
dropout patterns in total. Table 1 summarises nine 
of the most frequent dropout patterns. Patterns 1 
to 5 contain one-wave dropouts and the patterns 6 
to 9 two- and three-wave dropouts. Respondents 
with cross-sectional data from one time point only 
are not considered. Comparisons with respondents 
who participated five years in a row (n=1552) show 
some differences in the distribution of gender and 
school type. The incomplete panel dataset (n=3909) 
contains more females, somewhat fewer respondents 
from lower junior high schools and more from 
grammar schools.

Sixteen different types of delinquent behaviour were 
measured by self-reports due to the period of the last 
12 months. These types include violence, aggravated 
assault with or without a weapon, shoplifting, car 
and bicycle theft, vandalism, graffiti, scratching, 
drug consumption and drug dealing.4 Prevalence 
of the 16 different offenses are summed up to an 
index for each panel wave. The index has a range 
between zero and 16. Higher index values indicate 
more versatile criminal activity. On average, the 
mean offense rate increases up to the second panel 
wave (average age of 15) and decreases thereafter. 
The curvilinear development (also described as age-
crime curve) is typical for adolescents aged between 
14 and 18 years and is labelled as an adolescent-
limited type of delinquent behaviour (e.g. Moffitt, 
1993). The index of five panel waves (yt) will be 
used for the selection and pattern mixture models 
in the following section. Substantive analysis with 
the complete data pattern support the curvilinear 
development of delinquency and the use of quadratic 

3 The SABIC replaces N in the BIC formula with (N + 2)/24 and is included in the Mplus output.
4 Internet crime was not included because measurements were not conducted in the first two panel waves.
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growth curve models (see Mariotti & Reinecke, 
2010).

Indicator variables Rt have three categories, one for 
respondents with no missing data, one for respondents 
with a monotone missing pattern and one for 
respondents with a non-monotone missing pattern. 
Only monotone patterns can occur for the first and 
second panel wave. Therefore, indicator variables R1 
and R2 have two categories whereas R3, R4 and R5 have 
three categories. The distributions are shown in Table 
2. Regarding the last three panel waves 5.8% up to 
11.9% of the respondents have a monotone dropout 
pattern. Between 4.4% and 8.4% show a non-montone 
dropout pattern for the same time period.

Results

Results of the Diggle and Kenward model (Figure 2) 
as well as of the Roy model (Figure 3) are presented 
and discussed as follows. Six variants of the Diggle 

and Kenward selection model are estimated with the 
program Mplus (see Table 3). The models DK4, DK5 
and DK6 consider the time-invariant variable gender 
which are related to the growth curve variables as 
well as to the indicator variables. Models DK2 and 
DK5 have a smaller number of parameters than DK1 
and DK4 because the relations between observed 
variables yt and Rt are restricted to be equal across 
time for t = 3, 4, 5. The relation between y2 and R2 
is estimated separately. In the same way, the lagged 
relations between yt−1 and Rt are restricted to be equal 
for t = 3, 4, 5 and the lagged relation between y1 and 
R2 is estimated separately. The models postulate that 
time-related differences for the dropout mechanism 
occur only between t1 and t2 and not between t2 and 
further panel waves. In model DK5 the relations 
between gender and indicator variable Rt are also 
restricted to be equal over time for t = 3, 4, 5.

Models DK3 and DK6 enlarge the time-invariant 
restrictions to all panel waves. There are no separate 
estimators for the path between y2 and R2 as well as 
for the path between y1 and R2. In model DK6 the 
relations between gender and indicator variable Rt 
are also restricted to be equal over all measurements.

Comparisons of the information criteria AIC show 
nearly equal values between DK1 and DK2 as well 
as between DK4 and DK5. The BIC values support 
the specification of models DK2 and DK6 whereas 
the SABIC values support the models DK2 and 
DK5. All in all, the models DK3 and DK6 seem 
to be too restrictive according to their AIC and 
SABIC values. Therefore, models DK2 and DK5 
are accepted for a more detailed description and 
discussion.

The means of the growth curve variables confirm the 
curvilinear development of delinquency in model 
DK2 and model DK5 (see Tables 4 and 5): Intercepts 
and linear slopes have positive parameter estimates 
while the estimates of the quadratic slopes are 
negative. The development confirms the usual trend 
of the age-crime curve detected in other longitudinal 
studies (e. g. Wikström, Oberwittler, Treiber, & 
Hardie, 2012).

The within-time influences of the observed variable 
y2 on to the indicator variable R2 are positive and 
significant in both models indicating that dropouts of 
the second panel wave are related to the amount of 
delinquent behaviour in the same wave. This result 
provides evidence for an NMAR mechanism. The 
odds ratio for the significant path in model DK2 is 
1.147 reflecting a slightly higher chance of dropouts 
for people with higher delinquent mean rates 
within the current panel wave (see Table 4). Nearly 
the same result is obtained in model DK5 (odds 
ratio=1.136, see Table 5). In contrast, the lagged 

Pattern 2002 2003 2004 2005 2006 n

1 −− t2 tv t4 t5 403
2 t1 −− t3 t4 t5 134
3 t1 t2 −− t4 t5 109
4 t1 t2 t3 −− t5 96
5 t1 t2 t3 t4 −− 224  
6 t1 t2 −− −− −− 289
7 t1 t2 t3 −− −− 150
8 −− −− t3 t4 t5 275
9 −− −− −− t4 t5 114

Table 1 Sample of missing data patterns

Panel wave Variable n %

t1 R1 (0)  3308 84.6
 R1 (1)  601 15.4
t2 R2 (0)  3265 83.5
 R2 (1)  644 16.5
t3 R3 (0)  3293 77.2
 R3 (1)  289 7.4
 R3 (2)  327 8.4
t4 R4 (0)  3510 89.8
 R4 (1)  226 5.8
 R4 (2)  173 4.4
t5 R5 (0)  3209 82.1
 R5 (1)  467 11.9
 R5 (2)  233 6.0

(0): Person is not missing, (1): Person has monotone missing pattern. 
(2): Person has non-monotone missing pattern 

Table 2 Distributions of the indicator variable R for five panel waves (2002-2006) 
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relationships between y1 and R2 are small and not 
significant in both models. For the subsequent waves 
the reported relationships have opposite results: The 
lagged relationships are now positive and significant 
and the within-time regressions are small and not 
significant. This result provides evidence for an 
MAR mechanism. Odds ratios for the significant 
paths are 1.08 and 1.07 reflecting a slightly higher 
chance of dropouts for people with higher delinquent 
mean rates in the particular previous panel wave. 
It seems to be obvious that with overall increasing 
delinquency rates in early adolescence the chance 
of temporary dropouts is higher for people with 
larger delinquency rates. With overall decreasing 

delinquency rates the dropout mechanism is 
changing from NMAR to MAR.

For model DK5 the negative influence of gender 
toward the indicator variable y2 (odds ratio=0.71) 
and the other indicator variables (odds ratio=0.69) 
shows that female respondents have a lower chance 
of a temporary dropout than male respondents. 
Earlier analyses with similar panel data measuring 
self-reported delinquent behaviour have also shown 
that female respondents have a higher probability to 
remain in the study (Reinecke & Weins, in press).

The Roy model (Figure 3) considers unobserved 
heterogeneity in the sample due to the development 
of delinquent behaviour. Variation of the class 
variable c (number of classes) reflects the size of 
the unobserved heterogeneity. Each class represents 
a subgroup with different trajectories which can 
be related to dropout time. The following analysis 
varies the number of classes between one and 
six. In line with Equation 6 class specific logistic 
regressions between the indicator variables Rt and 
class variable c are estimated. For mixture models 
with two or more classes all or part of the logistic 
regression coefficients can be set equal within the 
classes. This would test the assumption that the 
dropout process within the classes is not dependent 
on the particular panel wave.

Table 6 gives an overview about the estimated 
models. Looking at the LMR-LRT, models 
with more than four classes produce redundant 
information in the additional classes (p-value>0.05). 
That applies for models without restrictions as 
well as for models with the time- related equality 
restrictions (Models with labels eq and peq). All 
in all, the restricted models have better model 
fits than the unrestricted ones. Models with three 
or four latent classes reflect the best mixture of 
the developmental trajectories. Previous mixture 
analyses have shown that those four different 
classes reflect a substantial decomposition of the 
developmental process in delinquent behaviour (cf. 
Mariotti & Reinecke, 2010; Reinecke, in press).

Additionally, for these models time-related equality 
restrictions of the logistic regression coefficients are 
separated between the first two and the last three 
panel waves (Models with the label peq). Recall, 
that R1 and R2 have only two categories and can only 
consider monotone dropouts (see Table 2). So, these 
models consider differences in the dropout process 
across the time range of the study. Therefore, the 
partly restricted mixture model with four classes 
showing a significant LMR-LRT (p-value=0.04) will 
be discussed in detail.

The trajectories of the four classes can be described 

Models without gender

Model Parameter AIC BIC SABIC
DK1 29 74108 74290 74198
DK2 25 74107 74264 74185
DK3 23 74126 74270 74197
Models with gender

Model Parameter AIC BIC SABIC
DK4 36 72755 72980 72865
DK5 30 72752 72939 72844
DK6 27 72766 72935 72849

Table 3 Results of the Diggle and Kenward models

Variable Intercept Standard error z-value 

Intercept 0.874 0.034 25.390 
Linear slope 0.354 0.034 10.336 
Quadratic slope -0.101 0.008 -12.953 
Relation Regression Standard error z-value Odds ratio

y1 → R2
 -0.018 0.031 -0.593 0.982

y2 → R2 0.137 0.022 6.308 1.147

y2,3,4 → R3,4,5
 0.079 0.013 6.144 1.083

y3,4,5 → R3,4,5
 -0.003 0.018 -0.171 0.997

Table 4 Estimated parameters of model DK2 

Variable Intercept Standard error z-value 

Intercept 1.102 0.054 20.277 
Linear Slope 0.432 0.054 7.946 
Quadratic Slope -0.115 0.013 -9.113 
Relation Regression Standard error z-value Odds ratio

y1 → R2 -0.023 0.031 -0.754 0.977
y2 → R2 0.128 0.022 5.910 1.136
Gender → R2 -0.341 0.089 -3.874 0.711 
y2,3,4 → R3,4,5 0.066 0.014 4.851 1.068
y3,4,5 → R3,4,5 -0.007 0.018 -0.373 0.933
Gender → R3,4,5 -0.375 0.064 -5.810 0.688

Table 5 Estimated parameters of model DK5
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as follows (cf. Figure 4): the class of non-offenders 
with almost no delinquency (n=3373), the class 
of increasers with a slow increase of delinquency 
(n=182), the class of desisters with high delinquency 
at wave one and a continuous decrease thereafter 
(n=207) and finally a class of people with a 
curvilinear trajectory reflecting an adolescent limited 
type of delinquent behaviour (n=147). There are only 
slight differences between observed and estimated 
means for all four trajectories.

Estimated logistic regression coefficients between 
indicator variables Rt and class variable c show 
the influence of the panel dropouts on to the class 
membership (Table 7). Reference category is class 4 
(non-offenders). Recall that regression coefficients 
are set to be equal within classes for the indicator 
variables R1 and R2 and R3 to R5 respectively. Most 
relations are not significant due to the low number of 
cases. For class 1 (desisters) and class 2 (increasers) 
dropouts are not more likely compared with class 4 
(non-offenders). But for class 3 the chance to drop 
off the study is much higher than for class 4 (odds 
ratio=2.243). This result holds for the first two 
panel waves. There is no similar effect regarding 
the last three panel waves. Again, the hypothesis 
that people with larger delinquency rates have a 
higher chance to drop off the study is supported. For 
subsequent panel waves the indicator variables have 
no significant effect on class 3 compared to class 4. 
With a decrease of delinquency after the third panel 
wave the chance to drop temporarily off the study is 
less likely.

Cross-tabulating the distribution of indicator 
variable R2 with the distribution of the class variable 
c indicates that nearly one third of the people with 
an adolescent limited type of delinquent behaviour 
dropped temporarily off the study (54 out of 147) 
whereas the number of dropouts is much lower in 
the other classes (Table 8). Although relations of 
the other indicator variables are much smaller the 
tendency of a relationship between a temporary 
dropout and the delinquency rate is confirmed. In 
contrast to the Diggle and Kenward model the Roy 
model has the advantage that this relationship can 
be identified for a substantively important group 
of people, i.e., respondents with high levels of 
delinquency. 

Conclusions

Procedures and techniques to handle missing data 
in cross-sectional as well as longitudinal designs 
are well-known and discussed under methodological 
considerations. Quite often the MAR assumption 
is reasonable, but in case the missing mechanism 
is related to the dependent observed variable itself 
MAR-based techniques would produce biased 
results. To consider missing data mechanisms in 
panel designs a substantive model (e.g., latent 
growth curve model) can be combined with an 
additional model that describes the dropout process 
across the panel waves. One possibility is the 
selection model of Diggle and Kenward (1994) 
which augments the growth curves with logistic 
regressions to estimate the probability of missing 
data at each wave depending on the substantive 

Classes Parameter Ek AIC BIC SABIC LMR-LRT p-value

1 22 − 77428 77566 77496 − −
2 31 0.942 75265 75460 75361 2152 0.00
2(eq) 27 0.941 75262 75432 75345 2125 0.00
3 40 0.944 73632 73883 73756 1629 0.00
3(peq) 34 0.945 73360 73844 73736 1612 0.00
3(eq) 32 0.950 73686 73887 73785 1548 0.06
4 46 0.939 72438 72727 72580 1251 0.05
4(peq)* 37 0.939 72431 72663 72545 1243 0.04
4(eq) 34 0.941 72445 72659 72551 1231 0.05
5 55 0.930 71653 71998 71823 792 0.32
5(eq) 39 0.937 71669 71913 71789 768 0.57
6 64 0.936 71068 71469 71266 595 0.26
6(eq) 44 0.933 71073 71349 71209 591 0.19

(eq) gives the model results under the restriction that the logistic regression coefficients 
of all panel waves are set to be equal within the classes.(peq) gives the model results 
under the restriction that the logistic regression coefficients of the first two panel 
waves and the last three panel waves are set to be equal separately within the classes. 
*denotes the model discussed in detail.

Table 6 Results of the mixture models

Figure 4 Observed and estimated trajectories of the Roy model with four classes 
circle = observed means, triangle = estimated means, description of the classes (from bottom to 
top): non-offenders, increasers, desisters, adolescent limited

Netherlands Journal of Psychology | Studying panel dropouts 129



variable. MAR as well as NMAR mechanisms 
can be detected. Another possibility is the pattern 
mixture model of Roy (2003) that makes use of 
the growth mixture approach (Muthén & Shedden, 
1999). The dropout indicators is related to the 
latent class variable which reflects the degree of 
unobserved heterogeneity in the data.

Both models have been applied to data from a 
German panel study which explores the development 
of adolescents’ delinquent behaviour (Boers et al., 
2010). Five panel waves are used for the current 
analyses with respondents participating at least 
in two of the five waves. The development of 
delinquent behaviour is curvilinear which requires 

a latent growth curve model with an intercept, a 
linear and a quadratic slope. Results of the selection 
model of Diggle and Kenward (1994) indicate an 
NMAR mechanism for the first two panel waves 
while an MAR mechanism is detected for the last 
three panel waves. This result is also stable when 
the growth curve model is conditioned on gender. 
The NMAR mechanism occurs when on average 
the delinquency rate is increasing while the dropout 
seems to be MAR when on average the delinquency 
rate is decreasing. Results of the pattern mixture 
model of Roy (2003) complement the findings of 
the selection model. Dropout indicators of the first 
two waves have a significant influence on the class 
of respondents which follow an adolescent limited 
type of delinquent behaviour and have on average 
the highest delinquency rates across the time range 
of the study.

The application of the selection and pattern mixture 
model shows, in principle, the possibility to explore 
different dropout processes in panel studies due to 
MAR and NMAR mechanisms. Integration of a 
submodel that describes the propensity for missing 
data allows to identify the impact of the missing 
data mechanism on to the longitudinal results. The 
applied selection and pattern mixture models are 
capable to produce accurate parameter estimates 
when their requisite assumptions hold. But when 
the assumptions are violated they are also prone 
to substantial bias. Therefore, the current findings 
should be interpreted with caution. The logistic 
regression coefficients are small due to the low 
number of temporary dropouts. And only one effect 
is significant in the pattern mixture model for the 
smallest class of respondents. With further available 
panel waves the obtained results have to replicated. 
Other previous analyses in the same substantive 
context have also detected a significant relationship 
between the level of delinquency and the possibility 
to drop off at least temporarily from the longitudinal 
setting (Reinecke & Weins, in press). 

Relation Coefficient Standard error z-value Odds ratio

R1, R2 → Class 1 0.064 0.157 0.407 1.066
R3, R4, R5 → Class 1 0.136 0.090 1.511 1.146

R1, R2 → Class 2 0.176 0.289 0.608 1.192
R3, R4, R5  → Class 2 0.008 0.107 0.076 1.008

R1, R2 → Class 3 0.808 0.161 5.023 2.243
R3, R4, R5  → Class 3 -0.126 0.104 -1.221 0.881

Class 4 is the reference class (non-offenders).

Table 7 Logistic regressions of indicator variables Rt

R2 Classes ∑

 1 2 3 4 

0 159 159 93 2.854 3.265
 76.81% 87.36% 63.27% 84.61% 83.53

1 48 23 54 519 644
 23.19% 12.64% 36.73% 15.39% 16.47

∑ 207 182 147 3.373 3.909
 100.00% 100.00% 100.00% 100.00% 100.00

Table 8 Relation between indicator variable R2 and classes
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Cheung and Chan (2005) proposed a two-stage method to conduct meta-analytic structural equation modelling 
(MASEM). MASEM refers to the technique of fitting structural equation models to pooled correlation or covariance 
matrices from several studies. Unfortunately, researchers do not always report all correlations between the variables 
of interest. In this paper, we propose a method to deal with missing correlations in the two-stage approach.  
We illustrate the proposed model with a meta-analysis of teacher-child relationships variables from 99 studies.  
In addition, using simulated data, we show that our method leads to more precise parameter estimates than the 
existing approach.

Where: Netherlands Journal of Psychology, Volume 67, 132-139

Meta-analytic structural  
equation modelling with  
missing correlations

Meta-analytic structural equation modelling 
(MASEM) refers to the technique of fitting structural 
equation models to correlation or covariance matrices 
from several studies. A well-known approach to 
conduct MASEM is the two-stage approach of 
Cheung and Chan (2005). In the first stage, correlation 
matrices are tested for homogeneity across studies. If 
the matrices are not significantly different from each 
other, they are combined to form a pooled correlation 
matrix. In the second stage, the pooled correlation 
matrix is taken as the observed matrix in an SEM 
analysis. User-friendly software to apply the two-
stage method is available in the R-Package metaSEM 
(Cheung, 2011), which utilises the OpenMx package 
(Boker et al., 2011). MetaSEM gives parameter 
estimates with standard errors, a chi-square measure 
of fit, and likelihood based confidence intervals (see 
Neale & Miller, 1997) for parameters at both stages of 
the analysis. 

Ideally, researchers always report the correlations 
between all variables in their study. However, often 
not all correlations between the research variables 
are given in a paper. Sometimes, the missing 
correlations can be derived from other statistics 
that the authors do provide, such as regression 

coefficients. However, this is not always possible, 
for example when two variables are both outcome 
variables in regression analyses. The two-stage 
approach incorporates studies with missing 
variables, but a way to handle missing correlations 
has not yet been proposed. As a consequence, for 
each missing correlation, one of the two variables 
associated with the correlation has to be treated as 
missing. We will refer to this method as the omitted 
variables approach (OV approach).

In the present paper, we propose a method to deal 
with missing correlations in the two-stage approach. 
This method involves adding one parameter to the 
model for each missing correlation. We will refer 
to this method as the omitted correlations approach 
(OC approach). After outlining the method, we 
illustrate its use with a meta-analysis of teacher-child 
relationships variables. 

MASEM with missing variables and 
missing correlations

Meta-analysis combines the results from several 
studies. For MASEM, correlation matrices of the 
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variables of interest will be collected from several 
studies. The analysis has two stages.

Stage 1: Pooling correlation matrices from several 
studies 
Let Rg be the pg x pg sample correlation matrix and 
pg be the number of observed variables in the gth 
study. Some observed correlation matrices may have 
missing correlations. Moreover, not all studies may 
include all variables. The correlation matrices for the 
first three studies may be: 

R1 =    R2 =           R3 =                  .

Here, Study 1 has all variables and correlations, 
Study 2 misses a variable, and Study 3 has all 
variables but misses a correlation. The OV approach 
accounts for missing variables, but not for missing 
correlations. In the OC approach, we account for 
missing correlations by adding a new matrix (matrix 
Cg in Equation 1) to the model. We substitute an 
arbitrary value (e.g. zero) in the observed matrix 
Rg for a missing correlation. We obtain an estimate 
of the population correlation matrix Rpop of all p 
variables by fitting a multigroup SEM model, in 
which the model for each group (study) is:

Σg = Dg ( Mg Rpop Mg
t ) Dg

t  + Cg .  (1)

In this model, Rpop is the p x p population correlation 
matrix with diag(Rpop) = I, matrix Mg is a pg x p 
selection matrix that filters out the missing variables 
in study g. Matrix Mg is constructed by taking a p x p 
identity matrix and removing the rows corresponding 
to the missing variables in study g. Dg is a pg x 
pg diagonal matrix that accounts for differences 
in variances across the g studies. New in the OC 
approach is the addition of Matrix Cg, which is used 
to account for missing correlations. Matrix Cg is a 
symmetric pg x pg correction matrix, with fixed zeros 
for all present correlations and a free parameter for 
the missing correlations in study g. 

With the identification constraint diag(Rpop) = I and 
a free Dg matrix, the hypothesis that is being tested 
is equality of covariances (not of correlations) as 
the variances in each study do not necessarily equal 
unity. The homogeneity of covariance matrices 
(covariances and variances) can be tested by 
constraining the elements of the diagonal matrix 
Dg to be equal across studies, so that Dg = D for all 
g (Cheung & Chan, 2005). The unity of variances 
can be tested by constraining the elements of the 
diagonal matrix Dg to unity, Dg = I for all g.

The model in Equation 1 is identical to the model in 
Stage 1 of Cheung and Chan’s two-stage approach, 
except for the correction matrices Cg. In matrix 
Cg, the free parameter for each missing correlation 

will take on a value that minimises the difference 
between the arbitrary chosen value for the missing 
correlation in the observed matrix Rg (e.g., zero), and 
the estimate in Rpop for the corresponding correlation. 
A chi-square measure of fit for the model in Equation 
1 is obtained by comparing its -2 log likelihood with 
the -2 log likelihood of the saturated model. The 
saturated model is given by:

 Σg = Dg Rg Dg
t .    (2)

The difference between the -2 log likelihoods 
follows a chi-square distribution with degrees of 
freedom equal to the difference in numbers of 
parameters between the two models. When the chi-
square test turns out significant, then the hypothesis 
of homogeneity of covariances is rejected. The 
chi-square statistic can also be used to calculate 
approximate fit indices such as the Root Mean 
Square Error of Approximation (RMSEA, Steiger  
& Lind, 1980).

When the model fit is not acceptable, then the 
hypothesis of homogeneity of covariances is not 
tenable, so that the estimation of Rpop is not valid. 
Researchers may then create clusters of more similar 
studies, and construct separate pooled correlation 
matrices for all clusters of studies. Alternatively, a 
random effects model could be used, which estimates 
variances (and covariances) between the pooled 
correlation coefficients across studies. In this paper 
we do not consider random effects models. 

The model from Equation 1 can be fitted using 
maximum likelihood estimation with any structural 
equation modelling program. However, writing the 
syntax can be very laborious in some programs. 
OpenMx (Boker et al., 2011) is a very flexible 
R-package, allowing the use of all R functions (R 
Development Core Team, 2011). 

Stage 2: Fitting structural equation models
At Stage 2, the pooled correlation matrix from Stage 
1 is used as the input matrix in an SEM analysis. 
Cheung and Chan (2005) propose using weighted 
least squares estimation at this stage. Weighted least 
squares estimation takes the asymptotic covariance 
matrix of the correlation coefficients from Stage 
1 as the weight matrix in the fit function. Some 
correlation coefficients at Stage 1 are estimated using 
information from more studies than other correlation 
coefficients. As a result, coefficients that are based 
on more studies will have smaller variance in the 
asymptotic covariance matrix, and thus get more 
weight in the estimation process than coefficients 
that are based on less studies. 

SEM generally requires the use of covariance 
matrices, however, the input matrix at Stage 2 is a 
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correlation matrix. Treating the correlation matrix 
as a covariance matrix leads to incorrect results 
when estimating confidence intervals or when 
testing specific hypotheses (Cudeck, 1989). To 
obtain correct results at Stage 2, we add a so-called 
estimation constraint. This constraint enforces the 
diagonal of the model implied correlation matrix to 
identity.

Illustrative example

Data
Roorda, Koomen, Spilt and Oort (2011) collected 99 
studies that reported correlations between positive 
teacher-student relations and negative teacher-
student relations on the one hand and student 
engagement and student achievement on the other 
hand. Correlations between positive teacher-student 
relations and negative teacher-student relations 
were collected afterwards for the present paper. Of 
these studies, 63 were conducted at primary schools 
and 36 at secondary schools. In total, there where 
129,184 respondents (sample sizes ranging from 
42 to 39,553). Based on leading theories about 
teacher-student relations (Connell & Wellborn, 

1991; Pianta, 1999), teacher-student relations were 
considered as exogenous variables and engagement 
and achievement as endogenous variables. Out of the 
99 studies, 20 studies missed a correlation between 
two variables, and 90 studies did not include one or 
more of the four variables.

Results 
Table 1a gives the fit results of the several models 
we fitted to the 99 correlation matrices, using 
OpenMx (Boker et al., 2011). Model 1 is a saturated 
model, meaning that a correlation matrix is estimated 
for each study, without equality restrictions across 
studies. This model is used as a baseline model, to 
obtain fit indices for Models 2 to 4. Model 2 is a 
model in which we restricted all covariances to be 
equal, without restrictions on the variances across 
studies (equal covariances). Model 3 is a model in 
which we restricted all covariances and variances 
to be equal across studies (equal variances and 
covariances). Model 4 is a model in which we 
additionally restricted all variances to be unity (equal 
variances across studies).  

All three models at Stage 1 had significant chi-
square values, indicating that the models do not fit 

Table 1 Fit results of models at Stage 1 and Stage 2 using two approaches (N = 129,184)

a) Fit results using the OC approach

Model -2 log likelihood df χ2 RMSEA + 95% CI

STAGE 1    
1. Saturated  271981.9 0  0   -
2. Equal covariances (Dg = free)  277400.2 214 5418.34  .0137 [.0133 ; .0141]
3. Equal variances and covariances (Dg = D) 277957.2 474 5975.35  .0095 [.0092 ; .0097]
4. Variances equal to unity (Dg = I)  277957.4 478 5975.53  .0094 [.0092 ; .0097]

STAGE 2    
5. Mediation model (based on Model 2) 144.73 2  144.73  .0235 [.0197 ; .0274]  
 
b) Fit results using the OV approach
    
Model -2 log likelihood df χ2 RMSEA + 95% CI

STAGE 1    
1. Saturated  249821.0 0  0   -
2. Equal covariances (Dg = free)  254872.7 193 5051.64  .0140 [.0136 ; .0144]
3. Equal variances and covariances (Dg = D) 255420.2 434 5599.22  .0096 [.0093 ; .0099]
4. Variances equal to unity (Dg = I)  255420.3 438 5599.28  .0096 [.0093 ; .0098]

STAGE 2    
5. Mediation model (based on Model 2) 178.48 2  78.48  .0261 [.0223 ; .0301]
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the data exactly. The RMSEAs were all below .05, 
indicating close approximate fit (Browne & Cudeck, 
1992). As we do not have any hypothesis on the 
variances being equal across studies, we take the 
result of Model 2 as the estimate of the population 
correlation matrix. This correlation matrix is given 
in Table 2, and is used as the input for the Stage 2 
analysis.

The Stage 2 model is based on social-motivational 
theory (Connell & Wellborn, 1991), in which it has 
been hypothesised that student engagement acts as a 
mediator in the association between teacher-student 
relations and student achievement. Empirical studies 
have provided some support for the mediating role 
of engagement (e.g., Hughes, Luo, Kwok, & Loyd, 
2008). Therefore, the path model we fitted was a 
mediation model, in which the influence of positive 
and negative teacher-child relationships on student 
achievement was mediated by student engagement. 
This model fitted the population correlation matrix 
from Stage 1 closely according to the RMSEA. 
Figure 1 provides a graphical representation of 
the model, with standardised parameter estimates 
and 95% confidence intervals. Positive teacher-
student relations had a positive effect on Student 
engagement (β = .296, p < .05). Negative teacher-
student relations had a negative influence of 
about the same size (β = -.255, p < .05). Student 
engagement had a medium sized positive effect 
on Student achievement (β = .322, p < .05). The 

indirect effect of Positive teacher-student relations 
on Student achievement via Student engagement 
was small and positive (β = .095, p < .05). Negative 
teacher-student relations had a similar small-sized 
negative indirect effect on Student achievement  
(β = -.082, p < .05). The model explained 20.8 % of 
the variance in Student engagement, and 10.0% of 
the variance in Student achievement.

Results when deleting variables with missing 
correlations 
We compared our results with the results obtained 
with the OV approach. This involved the deletion 
of a variable in 20 of the 99 studies. As can be seen 
in Table 1b, this approach leads to a loss of degrees 
of freedom and slightly worse model fit. However, 
the models still fit closely according to the RMSEA. 
Some parameter estimates are different from the 
previous analysis, and the likelihood based confidence 
intervals are somewhat wider. Figure 2 shows a 
graphical comparison of the parameter estimates and 
confidence intervals from the two analyses. Each 
graph pictures the parameter estimate (the dot) with 
its 95% confidence interval (the line) for the analysis 
with the OC approach (upper part) and for the 
analysis with the OV approach (lower part). 

Simulation study
In order to investigate the effect of accounting for 
the missing correlations (OC approach), compared 
with deleting variables associated with missing 
correlations (OV approach), we performed an 
analysis of simulated data. We generated complete 
data for 100 studies. The pooled correlation matrix 
was estimated based on the full data, and based 
on data with missing correlations using the two 
approaches. The data were simulated under extreme 
conditions, so that differences between the two 
analysis methods became more apparent than in the 
illustration. Our expectation is that the OC approach 
leads to models with more power, better parameter 
estimates and smaller confidence intervals than the 
OV approach.

Data generation
We chose values of the population correlations based 
on the data from Roorda et al. (see Table 2). For 
each of the 500 replications, complete raw data were 

   1. 2. 3. 4.

1. Positive teacher-student relations  1   

2. Negative teacher-student relations -.373  1  

3. Student engagement   .385  -.345  1 

4. Student achievement   .157 -.152 .284  1 

Table 2 Pooled correlation matrix across 99 studies, N = 129,184

Figure 1 Path model with parameter estimates and their 95% confidence intervals
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Figure 2 Parameter estimates (dots) with 95% confidence intervals (lines) of all parameters for the analysis with the OC approach (upper dot + line) and the 
OV approach (lower dot + line)
Note: v1 = Positive teacher-student relations, v2 = Negative teacher-student relations, v3 = Student engagement, v4 = Student achievement
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drawn from the multivariate normal distribution, 
with means equal to zero, and variance covariance 
matrix equal to the population correlations. We chose 
100 as the number of studies, with each study having 
a sample size of 100. So, each dataset contained 100 
x 100 = 10000 scores on 4 variables. For each study, 
the correlation matrix was calculated and included in 
the meta-analysis. 

Results with complete data
Fitting the model from Equation 1 (with Dg = I) 
to the complete data in 500 samples led to the 
average correlations in Table 3a. Percentages of 
estimation bias in all parameters are calculated as 
100 × (mean estimated value – population value) 
/ population value. According to Muthén, Kaplan 
and Hollis (1987), estimation bias less than 10% 
can be considered negligible. With complete data, 
estimation bias was below 1% for all parameters. 
The model had 994 degrees of freedom, the average 
of all chi-square values was 294.48 (SD = 41.28).

Results with missing correlations
The correlation between variables 1 and 3 was 
deleted randomly for 80% of the studies. Also 
for 80% of the studies we randomly deleted the 

correlation between variables 2 and 3. In this way, 
about 64% of the studies missed both correlations, 
and about 32% studies missed one of them, while 
only about 4% of the studies had complete data. 

Using the OC approach, we obtained the pooled 
correlation matrix shown in Table 3b. The model had 
834 degrees of freedom, the average chi-square value 
was 119.29 (SD = 39.60). The estimated correlations 
based on the data with missing correlations were 
close to the population correlations. The largest 
difference was found for the correlation between 
variables 1 and 4, which deviated 1.27% from the 
population correlation. The results in Table 3c were 
obtained by removing one variable for each missing 
correlation (the OV approach). This model had 618 
degrees of freedom, the average chi-square value 
was 62.85 (SD = 29.98). The results do not differ 
very much from the results in Table 3b. The largest 
difference was found for the correlation between 
variables 1 and 3, which deviated -0.84 % from the 
population value. 

The bias in parameter estimates is not very different 
across the three models (complete data vs. OC 
approach vs. OV approach). However, a structural 

Table 3 Estimated average pooled correlations and bias percentages with a) complete data, b) the OC approach and c) the OV approach

a) Complete data
    Estimated correlations  Estimation bias (%)
  Variable 1 Variable 2 Variable 3 Variable 4 Variable 1 Variable 2 Variable 3

Variable 1 1      
Variable 2 -.371  1   - 0.54%  
Variable 3 .356 -.343 1  - 0.56% - 0.58% 
Variable 4 .156 -.151 .283 1 - 0.64% - 0.66% - 0.35%
       
b) OC approach    
    Estimated correlations  Estimation bias (%)
  Variable 1 Variable 2 Variable 3 Variable 4 Variable 1 Variable 2 Variable 3

Variable 1 1      
Variable 2 -.373  1   0.00%  
Variable 3 .359 -.349 1  0.28% 1.16% 
Variable 4 .159 -.153 .287 1 1.27% 0.66% 1.06%  
   
c) OV approach
    Estimated correlations  Estimation bias (%)
  Variable 1 Variable 2 Variable 3 Variable 4 Variable 1 Variable 2 Variable 3

Variable 1 1      
Variable 2 -.371 1   -0.54 %  
Variable 3 .355 -.345 1  -0.84 % 0.00 %  
Variable 4 .156 -.151 .283 1 -0.64 % -0.66 % -0.35 %
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difference can be seen in width of the likelihood 
based confidence intervals. These are smaller with 
the use of the OC approach, compared with the OV 
approach. Figure 3 gives a graphical representation 
of the parameter estimates and the associated 95% 
likelihood based confidence intervals. The upper 
dot and line denote the average parameter estimate 
and confidence interval of the analysis with the OC 
approach, while the lower dot and line denote the 
average parameter estimate and confidence interval 
of the analysis with the OV approach. The dotted 
vertical line shows the population value of the 
parameter. As expected, omitting information leads 
to larger confidence intervals. The difference is most 
clearly seen in the correlations between variables 
3 and 4 in the lower right corner of the figure. It is 
not surprising that the difference is so apparent for 
the correlation between variables 3 and 4. As we 
deleted the correlation between variables 1 and 3 and 
between variables 2 and 3, both methods use equal 
amounts of information about these correlations. 
However, where our method still uses information 

about the correlation between variables 3 and 4, this 
information is often deleted in the other approach, 
leading to less precise parameter estimates. 

Discussion

In this paper we have proposed a method to 
incorporate missing correlations in MASEM. 
The method was demonstrated with an example 
from teacher-child interactions. Using simulated 
data, the method was compared with the current 
practice, which is to delete one of the variables that 
is associated with the missing correlation. As the 
OC approach uses more information than the OV 
approach we expected that our method would lead 
to better parameter estimates and smaller confidence 
intervals. Results from the very small simulation study 
indicated that the OC approach leads to models with 
larger degrees of freedom and smaller confidence 
intervals. The parameter estimates were close to the 
population values for all methods, indicating that 

Figure 3. Average parameter estimates (dots) with 95% confidence intervals (lines) of all correlations with the OC approach  (upper dot + line) and the OV 
approach  (lower dot + line). The dotted vertical line denotes the population value of the parameter
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deleting one or two variables in 80% of the studies did 
not really influence parameter recovery. 

A possible explanation of the similar results with 
respect to parameter bias between the methods is 
that in our study the missingness of the correlation 
coefficients were introduced randomly. Maximum 
likelihood estimation with data missing at random 
is known to lead to unbiased parameter estimates 
(e.g., Enders & Bandalos, 2001; Newman, 2003). In 
true meta-analysis, the missing correlations may not 

be missing at random, and it would be interesting to 
investigate the effect of not-random missingness. For 
example, if the correlations between variables 3 and 
1 and variables 3 and 2 are mainly missing in studies 
where the correlation between variable 4 and 3 is 
high, then if we delete variable 3 in the OV approach, 
the information about the correlation between 
variable 4 and 3 is lost, and the parameter will be 
underestimated. Using the OC approach, all remaining 
information would be used and the parameter estimate 
is expected to be closer to the true value.


